• Title/Summary/Keyword: Delay error

Search Result 1,071, Processing Time 0.027 seconds

A Study on the Measurement Time-Delay Estimation of Tightly-Coupled GPS/INS system (강결합방식의 GPS/INS 시스템에 대한 측정치 시간지연 추정 연구)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.116-123
    • /
    • 2008
  • In this paper we study the performance of the measurement time-delay estimation of tightly-coupled GPS/INS(Global positioning system/Inertial Navigation system) system. Generally, the heading error estimation performance of loosely-coupled GPS/INS system using GPS's Navigation Solution is poor. In the case of tightly-coupled GPS/INS system using pseudo-range and pseudo-range rate, the heading error estimation performance is better. However, the time-delay error on the measurement(pseudo-range rate) make the heading error estimation performance degraded. So that, we propose the time-delay model on the measurement and compose the time-delay estimator. And we confirm that the heading error estimation performance in the case of measurement time-delay existence is similar with the case of no-delay by Monte-Carlo simulation.

Preliminary Analysis of Precise Point Positioning Performance Using Correction of Tropospheric Delay Gradient

  • Bu-Gyeom Kim;Changdon kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.141-148
    • /
    • 2023
  • In this paper, impacts of tropospheric delay gradient correction on PPP positioning performance were analyzed. A correction for tropospheric delay error due to the gradient was created and applied using external data, and reference station data were collected on a sunny day and a rainy day to analyze the GPS only dual-frequency PPP positioning results. As a result, on the sunny day, the convergence time was about 35 minutes and the final 3D position error was 10 cm, regardless of whether the correction for the tropospheric delay error by the gradient was applied. On the other hand, on the rainy day, the 3D position error converges only when the correction was applied, and the convergence time was about 34 minutes. Furthermore, the final 3D position error was improved from 30 cm to 10 cm. In addition, the analysis of the PPP by reference station location on the rainy day showed that the PPP positioning performance was improved when the correction was applied to a user located in an area where the weather changes.

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

A Long-term Accuracy Analysis of the GPS Klobuchar Ionosphere Model (GPS Klobuchar 전리층 모델의 장기간 정확도 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • Global Positioning System (GPS) is currently widely used for aviation applications. Single-frequency GPS receivers are highly affected by the ionospheric delay error, and the ionospheric delay should be corrected for accurate positioning. Single-frequency GPS receivers use the Klobuchar model, whose model parameters are transmitted from GPS satellites. In this paper, the long-term accuracy of the Klobuchar model from 2002 to 2014 is analyzed. The IGS global ionosphere map is considered as true ionospheric delay, and hourly, seasonal, and geographical error variations are analyzed. Histogram of the ionospheric delay error is also analyzed. The influence of solar and geomagnetic activity on the Klobuchar model error is analyzed, and the Klobuchar model error is highly correlated with solar activity. The results show that the Klobuchar model estimates 8 total electron content unit (TECU) over the true ionosphere delay in average. The Klobuchar model error is greater than 12 TECU within $20^{\circ}$ latitude, and the error is less than 6 TECU at high latitude.

Influence of the Initiation Error of the Delay Detonator on the Rock Fracture Process in Smooth Blasting (SB발파에서 지발뇌관의 기폭초시오차가 암반파괴과정에 미치는 영향)

  • 조상호;양형식;금자승비고
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.121-132
    • /
    • 2004
  • Dynamic fracture processes of rock were analyzed to investigate the influence of the initiation error of the delay detonator in smooth blasting. The analysis models for the smooth blasting considered two blast geometries with three charge holes, and the simultaneous initiations without initiation error, with the initiation error of electronic delay detonator and with the initiation error of pyrotechnically delay detonator(DS detonator) were applied to the charge holes. In order to examine the effect of electronic and DS initiation detonator on the smooth blasting, the fracture process results were analyzed statistically.

Error Analysis and Compensation of Measurement Delay in INS/GPS Integrated Systems with Kalman Filtering (칼만필터를 사용하는 INS/GPS 결합시스템에서 측정치 지연에 의한 오차 분석 및 보상)

  • Park, Chan-Gook;Cho, Seong-Yun;Jin, Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1039-1044
    • /
    • 2000
  • In this paper, the error caused by the measurement delay in INS/GPS integrated systems with Kalman filtering is defined and analyzed through the analytical method and the simulation. It is proved that the error of measurement delay causes not only the position error but also the estimate error of the x-axis accelerometer bias when a vehicle turns. And the estimation method of the delay time and the compensation method using an extrapolation method are presented. The performance of the compensation method is shown by the analytic method and the simulation.

  • PDF

Design of $H_{\infty}$ Controller for Underwater Vehicle and Nonlinear Simulation (수중운동체에 대한 $H_{\infty}$ 제어기 설계와 비선형 시뮬레이션)

  • 전찬식;김종해박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.215-218
    • /
    • 1998
  • In this paper, we design the $H_{\infty}$ controllers satisfying robust stability and performance for underwater vehicle. The underwater vehicle has computations delay time and input delay. In addition, there exist parameter uncertainties by the roll motion coefficient error, buoyance error, and gravity error. We design the $H_{\infty}$ controllers using model-matching method and check the performance of the proposed controller by nonlinear simulation which includes time delay model, sensor error model, and actuator model.

  • PDF

X-band Microwave Photonic Filter Using Switch-based Fiber-Optic Delay Lines

  • Jung, Byung-Min
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • An X-band microwave photonic (MWP) filter using switch-based fiber-optic delay lines has been proposed and experimentally demonstrated. It is composed of two electro-optic modulators (EOMs) and $2{\times}2$ optical MEMS-switch-based fiber-optic delay lines. By changing time-delay difference and coefficients of each wavelength signal by using fiber-optic delay lines and an electro-optic modulator, respectively, a bandpass filter or a notch filter can be implemented. For an X-band MWP filter with four channel elements, fiber-optic delay lines with the unit time-delay of 50 ps have been experimentally realized and the frequency responses corresponding to the time-delays has been measured. The measured frequency response error at center frequency and the time-delay difference error were 180 MHz at 10 GHz and 3.2 ps, respectively, when the fiber-optic delay line has the time-delay difference of 50 ps.