• Title/Summary/Keyword: Delay Guarantee

Search Result 360, Processing Time 0.025 seconds

Robust stability for discrete time-delay systems with perturbations (섭동을 가지는 이산 시간지연 시스템의 강인 안정성)

  • Park, Ju-Hyeon;Won, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.158-164
    • /
    • 1996
  • In this paper, we consider the problem of robust stability of discretd time-delay systems subjected to perturbations. Two classes of perturbations are treated. The first one is the nonlinear norm-bounded perturbation, and the second is the structured time-varying parametric perturbation. Based on the discrete-time Lyapunov stability theory, several new sufficient conditions for robust stability of the system are presented. From these conditions, we can estimate the maximum allowable bounds of the perturbations which guarantee the stability. Finally, numerical examples are given to demonstrate the effectiveness of the results.

  • PDF

Application of Neural Network Scheme to Performance Enhancement of Rheotruder

  • Kim, Sung-Ho;Lee, Young-Sam;Diaconescu, Bogdana
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.114-118
    • /
    • 2005
  • Recently, in order to guarantee the quality of the final product from the production line, several equipments able to examine the polymer ingredients' quality are being used. Rheotruder is one of the equipments manufactured to measure the viscosity of the ingredient that is an important factor for the quality of final product. However, Rheotruder has nonlinear characteristics such as time delay which make systematic analysis difficult. In this paper, in order to enhance the performance of Rheotruder, a new scheme is introduced. It incorporates TDNN (Time Delay Neural Network) bank and Elman network to get a right decision on whether the tested ingredient is good or not. Furthermore, the proposed scheme is verified through real test execution.

Local Stabilization of Input-Saturated Nonlinear Systems with Time-Delay via Fuzzy Control

  • Shin, Hyun-Seok;Park, Chul-Wan;Kim, Eun-Tai;Park, Min-Kee;Park, Mig-Non
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.231-236
    • /
    • 2002
  • In this paper, we present an analysis and design method fur the control of input-saturated nonlinear systems with the time-delay. The target system is represented by Takagi-Sugeno (T-S) fuzzy model and the parallel distributed compensation (PDC) controller is designed to guarantee the local stability of the equilibrium point. We derive the sufficient condition for the local stability by applying Lyapunov-krasovskii theorem and this condition is converted into the LMI problem.

Reservation based Resource Management for SDN-based UE Cloud

  • Sun, Guolin;Kefyalew, Dawit;Liu, Guisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5174-5190
    • /
    • 2016
  • Recent years have witnessed an explosive growth of mobile devices, mobile cloud computing services offered by these devices and the remote clouds behind them. In this paper, we noticed ultra-low latency service, as a type of mobile cloud computing service, requires extremely short delay constraints. Hence, such delay-sensitive applications should be satisfied with strong QoS guarantee. Existing solutions regarding this problem have poor performance in terms of throughput. In this paper, we propose an end-to-end bandwidth resource reservation via software defined scheduling inspired by the famous SDN framework. The main contribution of this paper is the end-to-end resource reservation and flow scheduling algorithm, which always gives priority to delay sensitive flows. Simulation results confirm the advantage of the proposed solution, which improves the average throughput of ultra-low latency flows.

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

A Study on Robust Stability of Uncertain Linear Systems with Time-delay (시간지연을 갖는 불확정성 선형 시스템의 강인 안정성에 관한 연구)

  • Lee, Hee-Song;Ma, Sam-Sun;Ryu, Jeong-Woong;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.615-621
    • /
    • 1999
  • In this paper, we consider the robust stability of uncertain linear systems with time-delay in the time domain. The considered uncertainties are both the unstructured uncertainty which is only Known its norm bound and the structured uncertainty which is known its structured. Based on Lyapunov stability theorem and{{{{ { H}_{$\infty$ } }}}} theory known as Strictly Bounded Real Lemma (SBRL), we present new conditions that guarantee the robust stability of system. Also, we extend this to multiple time-varying delays systems and large-scale systems, respectively. Finally, we show the usefulness of our results by numerical examples.

  • PDF

Design of Lyapunov Theory based State Feedback Controller for Time-Delay Systems (시간지연 시스템을 위한 리아푸노브 이론 기반 상태 피드백 제어기 설계)

  • Cho, Hyun Cheol;Shin, Chan Bai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.95-100
    • /
    • 2013
  • This paper presents a new state feedback control approach for communication networks based control systems in which control input and output observation time-delay natures are generally occurred in practice. We first establish a generic state feedback control framework based on well-known linear system theory. A maximum time-delay value which allows critical stability of whole control system are defined to make a positive definite Lyapunov function which is mathematically composed of controlled system states. We analytically derive its control parameters by using a steepest descent optimization method in order to guarantee a stability condition through Lyapunov theory. Computer simulation is numerically carried out for demonstrating reliability of the proposed NCS algorithm and a comparative study is accomplished to prove its superiority for which the traditional control approach for NCS is made use of under same simulation scenarios.

Distributed Implementation of Delay Guaranteed Fair Queueing(DGFQ) in Multimedia Ad Hoc Wireless Networks (멀티미디어 Ad Hoc 무선망에서 지연시간 보장 공정큐잉(DGFQ)의 분산적 구현)

  • Yang Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.245-253
    • /
    • 2005
  • The multimedia ad hoc wireless network is quite an attractive issue since it offers a flexible solution to enable delivery of multimedia services to mobile end users without fixed backbone networks. However, with the unique design challenges of ad hoc wireless networks, it is a non-trivial issue to provide bounded delay guarantee, with fair share of resources. In this paper, we proposed distributed implementation of the delay guaranteed fair queueing (DGFQ) scheme in multimedia ad hoc wireless networks. Through the the results of performance evaluation, we can conclude that DGFQ also performs well to control bounded delay in multimedia ad hoc wireless networks.

  • PDF

Distributed Control of DC Servo Motor on LonWorks-IP Virtual Device Network for Predictive and Preventive Maintenance (LonWorks-IP 가상 디바이스 네트워크상에서 예지 및 예방보전을 위한 DC 서보모터의 분산제어)

  • Song, Ki-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.25-32
    • /
    • 2006
  • LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.

Providing Guaranteed Delay in Multimedia Ad Hoc Wireless Networks (멀티미디어 Ad Hoc 무선망에서의 지연시간 보장방안)

  • Yang, Hyun-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1177-1186
    • /
    • 2003
  • The multimedia ad hoc wireless network is quite an attractive issue since it offers a flexible solution to enable delivery of multimedia services to mobile end users without fixed backbone networks. However, with the unique design challenges of ad hoc wireless networks, it is a non-trivial issue to provide bounded delay guarantee, with fair share of resources. In this paper, we implemented the delay guaranteed fair queueing (DGFQ) scheme distributively. Through the results of performance evaluation, we can conclude that DGFQ also performs well to control bounded delay in multimedia ad hoc wireless networks.