• Title/Summary/Keyword: Delay Angle

Search Result 258, Processing Time 0.023 seconds

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.

Experimental Analysis to Behavior of Swivel Angle in Bent-axis type Oil Hydraulic Piston Pump for Heavy Vehicle (대형차량용 사축식 유압 피스톤 펌프의 경전각 거동에 따른 실험적 해석)

  • Beak, I.H.;Cho, I.S.;Jung, J.Y.;Oh, S.H.;Jung, S.H.;Jang, D.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.13-18
    • /
    • 2010
  • To improve the performance of the bent-axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore, but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism for the bent-axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The experimental results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as driving factor of the piston and the ahead delay angle influenced performance of the bent-axis type axial piston pump.

  • PDF

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Simulation Model of 7 Phase BLDC Motor Drives with Phase Angle Control (진상각을 갖는 7상 BLDC 전동기의 시뮬레이션 모델)

  • Kim, Hyun-Cheol;Oh, Hyung-Sik;Kim, Jang-Mok;Kim, Cheul-U
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2127-2134
    • /
    • 2007
  • The simulation model has been already developed not for 7 phase but for 3 phase BLDC motor. It is necessary to develop a new simulation model of multi-phase BLDC motor including the phase delay angle especially in the high speed region. In this paper, the suitability of the proposed model is verified through the several computer simulations, and experimented results.

Fringe-Order Determination Method in White-Light Phase-Shifting Interferometry for the Compensation of the Phase Delay and the Suppression of Excessive Phase Unwrapping

  • Kim, SeongRyong;Kim, JungHwan;Pahk, HeuiJae
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.415-422
    • /
    • 2013
  • White-light phase-shifting interferometry (WLPSI) is widely recognized as a standard method to measure shapes with high resolution over a long distance. In practical applications, WLPSI, however, is associated with some degree of ambiguity of its phase, which occurs due to a phase delay, which is the offset between the phase of the fringes and the fringe envelope peak position. In this paper, a new algorithm is proposed for the determination of a fringe order suitable for samples in which the phase delay mainly occurs due to noise, diffraction and a steep angle. The concepts of the decouple factor and the connectivity are introduced and a method for calculating the decouple factor and the connectivity is developed. With the phase-unwrapping procedure which considers these values, it is demonstrated that our algorithm determines the correct fringe order. To verify the performance of the algorithm, a simulation was performed with the virtual step height under noise. Some specimens such as step height standard and a column spacer with a steep angle are also measured with a Mirau interference microscope, after which the algorithm is shown to be effective and robust.

Effect of stall delay characteristics of symmetrical aerofoil using lateral circular ridges

  • Raatan, V.S.;Ramaswami, S.;Mano, S.;Pillai, S. Nadaraja
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.385-394
    • /
    • 2022
  • Global Warming has been driven majorly by the consumption of fossil fuels. Harnessing energy from wind is viable solution towards reducing carbon footprint created due to burning such fuels, However, wind turbines have their problems of flow separation and aerodynamic stall to tackle with. In an attempt to delay the stall angle and improve the aerodynamic characteristics of the NACA 0015 symmetrical aerofoil, lateral cylindrical ridges were attached to its suction surface, at chord positions ranging from 0.1c to 0.5c. The characteristics of the original and ridged aerofoils were obtained using simultaneous pressure readings taken in a wind tunnel, at a free stream Reynolds number of Re = 2.81 × 105 for a wide range of free stream angles of attack ranging from -45° to 45°. Depending on the ridge size, a delay in stall angle varying from 5° to 20° was achieved together with the maximum increase in lift in the post-stall phases. Additionally, efforts were made to identify the optimum position for each ridge.

Performance of a Closed-Loop Power Control Using a Variable Step-size Control Scheme in a DS/CDMA LEO Mobile Satellite System (DS/CDMA 저궤도 이동 위성 시스템에서 가변 스텝사이즈 조절 방식 폐루프 전력제어의 성능분석)

  • 전동근;이연우;홍선표
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.16-24
    • /
    • 2000
  • In this paper the performance of a closed-loop power control scheme using variable step size decision method for DS/CDMA based-low earth orbit(LEO) mobile satellite systems in which the long round trip delay is a dominant performance degradation factor is evaluated. Because there are fundamental differences in the characteristics between the LEO mobile satellite channel and terrestrial mobile channel, such as long round trip delay and different elevation angle, these factors are considered in channel modeling based on the European Space Agency(ESA) measurement data. Since the round trip delay (from the mobile terminal to the gateway station via satellite) is typically 10∼20ms in low altitude satellite channels, closed-loop power control is much less effective than it is on a terrestrial channel. Thus, the adaptive power control scheme using a variable step size control is essential for overcoming the long round trip delay and fading due to the elevation angle. It is shown that the standard deviation of signal to interference ratio(SIR) adopting a variable step size closed-loop power control scheme is much less than that of a fixed step size closed-loop power control. Furthermore, we have driven the conclusion that the measurement interval of power control commands is optimal choice when it is twice the round trip delay.

  • PDF

Combustion Characteristics of a Small Diesel Engine Converted to Spark Ignition Operation and Fuelled with Natural Gas (디젤 기관을 개조한 소형 전기점화식 천연가스기관의 연소 특성 연구)

  • Park, S.;.Thomas, D. G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.65-77
    • /
    • 1996
  • A small-sized industrial diesel engine was converted to a spark ignited engine and then adapted for fuelling with natural gas. After conversion work, general combustion characteristics of the gas engine(such as ignition delay, main and total combustion durations, and heat release characteristics) were studied as a functio of major engine operating variables such as air to fuel ratio, spark timing, and spark plug type. Some other studies on cyclic variation characteristics in IMEP, Pmax and (dp/dφ)max, and also optimum combustion phasing angle were performed.

  • PDF

Motor Speed and Phase Angle Detection Using A Sinusoidal AC Tacho-Generator (정현파 교류 타코제너레이터를 이용한 전동기속도 및 회전각 검출)

  • Choi, Jung-Soo;Cho, Kyu-Min;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.415-419
    • /
    • 1996
  • This paper presents motor speed and phase angle detection method using a sinusoidal AC tachogenerator. The 2-phase or 3-phase output tacho-generator can be adopted, and its' output voltages must have sinusoidal waveforms. Because the detection algorithm is simple, the proposed method can be implemented with analog devices of microprocessor conveniently. And the proposed method has a very short detection delay time. Especially in the analog implementation, there is no delay time without the settling time of analog devices. With the Experimental results, it is verified that the proposed method can accurately detect the instantaneous motor speed and phase over the wide ranges.

  • PDF

Design Method of Test Road Profile for Vehicle Accelerated Durability Test (차량의 가속내구시험을 위한 TEST ROAD PROFILE 설계방법)

  • Min, B.H.;Jung, W.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.128-141
    • /
    • 1994
  • This roport explain the basic theory of desinging the accelerating durability test road and the role of each factors contributing to test road surface profile. Also this road is designed by considering the charactors of vehicle suspension system and condition of driving. In test road, the factors affecting to the vehicle Structural durability are correlation among surface shape of road profile, frequency of vehicle suspension system, distribution of axletwist angle and vibration profile height Road PSD magnitude and frequency delay is used to control these factors relation.

  • PDF