• Title/Summary/Keyword: Delamination

Search Result 990, Processing Time 0.028 seconds

Fracture Strength of All-Ceramic 3-Unit Fixed Partial Dentures Manufactured by CAD/CAM and Copy-Milling Systems (CAD/CAM 및 카피밀링 시스템을 이용하여 제작한 구치부 3-유닛 고정성 국소의치의 파절강도)

  • Kang, Hoo-Won;Kim, Hee-Jin;Kim, Jang-Ju;Ko, Myung-Won
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • Purpose: Fracture strength of all-ceramic 3-unit fixed partial dentures manufactured by CAD/CAM and copy-milling systems were evaluated. Methods: Zirconia cores were made by milling the pre-sintered zirconia block by CAD/CAM or copy milling method followed by subsequent sintering. By building-up the corresponding porcelains on the core, all-ceramic bridges were fabricated, and those were evaluated in comparison with PFM fixed partial denture. Results: During the flexural test of the 3-unit PFM bridge, the porcelain started to chip or break at 507.28(${\pm}62.82$)kgf and the metal framework did not break until the maximum load level of 800kgf which was set in the testing instrument of this study. However, among all-ceramic restoration test groups, Everest(EV) group showed a peeling off or breakage of the porcelain from 365.64(${\pm}64.96$)kgf and the core was broken at 491.77(${\pm}55.62$)kgf. Those values of Zirkonzahn(ZR) were 431.03(${\pm}58.47$)kgf and 602.74(${\pm}48.44$)kgf, respectively. The break strength of the porcelain of PFM(PM) group was significantly higher than that of EV (p<0.05) group and there was no significant difference when comparing to that of ZR (p>0.05). ZR group showed higher break strength than that of EV group however there was no significant difference (p>0.05). The break strength of cores were in the increasing order of EV < ZR < PM (p<0.05). Conclusion: We could find that even though the PM group fractured at much higher value than all-ceramic cores, the breakage values of the porcelain of PM group with crack formation or delamination, which will be regarded as clinical failure, was significantly higher than that of EV group and not significantly higher than that of ZR group at p-values of 0.05. The break strength of ZR group was higher than that of EV group at an insignificant level(p>0.05).

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Static and Fatigue Characteristics of Urethane Foam Cored Sandwich Structures (우레탄 폼 코아 샌드위치 구조물의 정적 및 피로 특성)

  • 김재훈;이영신;박병준;김덕회;김영기
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.74-82
    • /
    • 1999
  • The static and fatigue characteristics of polyurethane foam cored sandwich structures are investigated. Three types of the specimens with the glass fabric faces and the polyurethane foam core are used; non-stitched. stitched, and stiffened sandwich specimen. Especially additional structural reinforcements with the twisted polyester and glass fiber for thickness direction are made to stitched sandwich structure panel to minimize the delamination of structure which is stitched the upper and lower faces through the core and the resin is impregnated Into stitched fiber with the characteristics of low viscosity of resin at resin flow temperature and cured together with during the curing process. Bending strength of stitched specimen which is 50 mm $50{\times}50{\;}mm$ pitched is improved by 50 % as com-pared with non-stitched specimen and stiffened specimen is improved 10 times more than non-stitched structure. After fatigue testing of $10^6$cycles by 20% of ultimate load under monotonic load, the bending fatigue strength of non-stitched specimen is decreased by 27% of monotonic bending strength, 39% for stitched structure and 20% for stiffened specimen. To verify the aging effect of polyurethane form core, Ultrasonic C-scanning equipment is used to detect the damage of skin laminate alone after fatigue test. From results of UT C-scan images, there is no defect that can be damaged occurred during fatigue test. It is concluded that the decrease of bending strength for foam cored sandwich specimen is caused by the decrease of stiffness due to the aging of polyurethane foam core during fatigue cycles.

  • PDF

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

Characterization of Interfacial Adhesion of Cu-Cu Bonding Fabricated by Thermo-Compression Bonding Process (열가압 접합 공정으로 제조된 Cu-Cu 접합의 계면 접합 특성 평가)

  • Kim, Kwang-Seop;Lee, Hee-Jung;Kim, Hee-Yeoun;Kim, Jae-Hyun;Hyun, Seung-Min;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.929-933
    • /
    • 2010
  • Four-point bending tests were performed to investigate the interfacial adhesion of Cu-Cu bonding fabricated by thermo-compression process for three dimensional packaging. A pair of Cu-coated Si wafers was bonded under a pressure of 15 kN at $350^{\circ}C$ for 1 h, followed by post annealing at $350^{\circ}C$ for 1 h. The bonded wafers were diced into $30\;mm\;{\times}\;3\;mm$ pieces for the test. Each specimen had a $400-{\mu}m$-deep notch along the center. An optical inspection module was installed in the testing apparatus to observe crack initiation at the notch and crack propagation over the weak interface. The tests were performed under a fixed loading speed, and the corresponding load was measured. The measured interfacial adhesion energy of the Cu-to-Cu bonding was $9.75\;J/m^2$, and the delaminated interfaces were analyzed after the test. The surface analysis shows that the delamination occurred in the interface between $SiO_2$ and Ti.

UV Curing and Peeling Characteristics of Acrylic Coating Ink with Various Amounts of Photoinitiator, Oligomer and Talc (광개시제, 올리고머 그리고 Talc 함량에 따른 아크릴계 코팅제의 UV경화 및 박리특성)

  • Yang, Jee-Woo;Seo, Ah Young;Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2013
  • As the usuage of tempered glass for touch panel increased rapidly with the development of industry, the amount of UV curable coating solution used to protect glass surfaces during a tempered glass manufacturing process increased as well. The UV curable coating has advantages compared to thermal curing such as shortened curing time and non-solvent. Appropriated polymer and monomer were used as an acid polymer to grant an alkali peeling ability. The monomers were 2-hydroxyl methylacrylate, 1,6-hexanediol diacrylate and dipentaerythritol hexaacrylate which have acryl groups of 1, 2, and 6, respectively. The combination of three different types of photoinhibitors were used and bisphenol A epoxy diacrylate was used as an oligomer. In this study, experiments were carried out by controlling the amount of photoinitiator, oligomer, and additive while maintaining the constant content of the acid polymer and the acrylic monomer. The changes in physical properties according to the additive content were investigated. It was found that the combination of photoinitiators was necessary to achieve the hardness above 4H and it was possible to control the delamination type of the coating film from a sheet to pieces by the addition of TPO as an initiator. The increase in oligomer contents increased the hardness and adhesiveness alongside dissection time. Talc content of 20 wt% showed the best results.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Synthesis of (Ba0.5Sr0.5)0.99Co0.2Fe0.8O3-δ (BSCF) and the Electrochemical Performance of the BSCF/GDC(Buffer)/ScSZ ((Ba0.5Sr0.5)0.99Co0.2Fe0.8O3-δ(BSCF)의 합성 및 BSCF/GDC(Buffer)/ScSZ의 전기화학적 특성)

  • Lim, Yong-Ho;Hwang, Hae-Jin;Moon, Ji-Woong;Park, Sun-Min;Choi, Byung-Hyun;Lee, Mi-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.369-375
    • /
    • 2006
  • [ $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{x}Fe_{1-x}O_{3-{\delta}}$ ] [x=0.8, 0.2](BSCF) powders were synthesized by a Glycine-Nitrate Process (GNP) and the electrochemical performance of the BSCF cathode on a scandia stabilized zirconia, $[(Sc_{2}O_3)_{0.11}(ZrO_2)_{0.89}]-1Al_{2}O_3$ was investigated. In order to prevent unfavorable solid-state reactions between the cathode and zirconia electrolyte, a GDC ($Gd_{0.1}Ce_{0.9}O_{2-{delta}}$) buffer layer was applied on ScSZ. The BSCF (x = 0.8) cathode formed on GDC(Buffer)/ScSZ(Disk) showed poor electrochemical property, because the BSCF cathode layer peeled off after the heat-treatment. On the other hand, there were no delamination or peel off between the BSCF and GDC buffer layer, and the BSCF (x = 0.2) cathode exhibited fairly good electrochemical performances. It was considered that the observed phenomenon was associated with the thermal expansion mismatch between the cathode and buffer layer. The ohmic resistance of the double layer cathode was slightly lower than that of the single layer BSCF cathode due to the incorporation of platinum particle into the BSCF second layer.

Lymph Node Ratio is More Predictive than Traditional Lymph Node Stratification in Lymph Node Positive Invasive Breast Cancer

  • Bai, Lian-Song;Chen, Chuang;Gong, Yi-Ping;Wei, Wen;Tu, Yi;Yao, Feng;Li, Juan-Juan;Wang, Li-Jun;Sun, Sheng-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.753-757
    • /
    • 2013
  • Objective: To evaluate the relationships between lymph node ratio (LNR, the ratio of positive lymph nodes in excised axillary lymph nodes) and disease-free survival (DFS) by comparing with traditional absolute positive lymph node number (pN classification) for prediction of breast cancer (BC) progrnosis. Methods and Patients: We retrospectively reviewed patients who received comprehensive therapy in Department of Breast Surgery, Hubei Cancer Hospital, China from Jan 2002 to Dec 2006 (Group A), and Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, China from Jun 2008 to May 2012 (Group B). Patients were allocated to low-risk (${\leq}0.20$), intermediate-risk (> 0.20 but ${\leq}0.65$), high-risk (>0.65) groups by LNR. The primary endpoint was 5-DFS. Results: A total of 294 patients were included in our study. LNR was verified as a negative prognostic factor for DFS (P=0.002 in Group A, P<0.0001 in Group B). Then we found the effects of pN and LNR delamination on disease-free survival (DFS) had statistical significance (P=0.012 for pN and P=0.031 for LNR stratification in Group A, both of them P<0.001 in Group B). Compared to pN staging, LNR staging displayed superior performance in prognosis, the adjusted hazard ratio of recurrence being 2.07 (95%CI, 1.07 to 4.0) for intermediate risk group (P=0.030) and 2.44 (95%CI, 1.21 to 4.92) for high risk group (P=0.013) in Group A. Conclusions: LNR stratification proved an adverse prognostic factor of DFS in lymph nodes positive invasive BC using cut-off values 0.20 and 0.65, and was more predictive than traditional pN classification for 5-DFS.

A study on the performance of the sacrificial anode used for cathodic protection of a marine bridge after 8 years (해상 교량에 설치된 희생양극식 전기방식의 8년 이후의 성능에 관한 연구)

  • Jeong, Jin-A;Ha, Ji-Myung;Lee, Du-Young;Lee, Sang-Deuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.510-515
    • /
    • 2016
  • Recently, corrosion occurred on the piles of a marine bridge located on the NamHae expressway in Korea. A sacrificial anode cathodic protection system was installed to prevent corrosion damage in the marine bridge. In the case of the marine bridge in this study, the sacrificial anode cathodic protection system was applied at the tidal and splash zones of the piles because the upper part of the structure was not corroded, and because corrosion occurs at the tidal and splash zones due to sea tides. To verify the performance of the sacrificial anode cathodic protection system 8 years later, cathodic protection (CP) current, CP potential, and degree of depolarization were measured. The experimental results on the performance of the sacrificial anode cathodic protection system from a total of 60 piles were classified into 4 categories: good CP effect results (13 piles), partial CP effect results (27 piles), temporarily erroneous results (5 piles), and need for maintenance because of delamination (15 piles). It was determined that additional repairs are required, such as the application of bulk anodes and jacket casings, for piles where the CP effect is poor.