• Title/Summary/Keyword: Deicing efficiency

Search Result 10, Processing Time 0.024 seconds

A study of effects on environment from road deicings (제설제가 환경에 미치는 영향 연구)

  • 신진호;허항록;신정식;김민영;신재영
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.31-37
    • /
    • 2001
  • Deicers have used for melting snow on the road during winter season, but they have largely influenced on environment and public assets and human health. The pollution level of snow and soil contained deicer was analyzed and evaluated the characteristics of deicers. The results were as follows 1. In the result of measurement of pollutants in snow contained deicer, the pH was a little higher than a comparative group and the concentration of $Cl^{-}$ ranged from 0.5% to 0.87%, and the electric conductivity ranged 12.4 to 24.6 mmho/cm. The concentration of Cd, As, and Hg was not detected, but those of Cu, Pb, Cr was higher than a comparative group. 2. In soil of the road spreaded with deicer, the pH is getting alkalized and the concentration of $Cl^{-}$ was high in January and returned the level of a comparative grout) in November by physical and chemical reaction with deicer, but the concentration of heavy metals were not connected with deicers. 3. In comparison of deicing efficiency, the concentration of $Cl^{-}$ was 3.3~5times high in spreading with deicer before snowing than after snowing. The concentration of $Cl^{-}$ in NaCl was higher than $CaCl_2$, but the deicing efficiency of Nacl was better than that of $CaCl_2$. Moreover, the new deicer have no salt, but deicing efficiency of new deicer was less than that of NaCl and $CaCl_2$.

  • PDF

An Implementation of Wireless Based Sensing System for Catenary Deicing (무선기반 전차선로의 해빙 감지시스템 구현)

  • Kim, Joo-Uk;Na, Kyung-Min;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.512-515
    • /
    • 2019
  • Overhead contact systems (OCS) consist of contact and messenger wires, in which the contact wire supplies electric energy to the railway vehicle by contacting a pantograph. However, this mechanical contact is interrupted during frosts or temperatures below $0^{\circ}C$ in the winter. In these conditions, railway vehicle accidents can occur during operation because of the low energy efficiency that results from the increase in the arcing between the contact wire and pantograph. Therefore, the detection of frost or freezing temperatures is necessary to maintain the stable operation of these trains. In this study, we proposed the development of a frost or freezing condition monitoring system on the OCSs that utilizes wireless communication.

The study of defrosting performance on automobile Windshield through different injection angle (Different injection angle에 따른 자동차 전면 유리 제상성능 연구)

  • Kang, Hyu-Goo;Lee, Kum-Bae;Kader, Md. Faisal;Oh, Gyu-Nam
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2454-2459
    • /
    • 2008
  • The objective of this paper is to find out the most effective injection angle for the purpose of deicing through SC/Tetra, a commonly used CFD software. Nowadays, vehicles are developed giving priority to an improved interior which emphasizes a pleasant environment and thermal comfort without decreasing the basic performance. Clear visibility is one of the most important phenomenon. The primary factors which affect the efficiency of deicing are 3D geometry of Defrost Nozzle, the inlet velocity and temperature of the flow and the injection angle. However in this paper, all these parameters are optimized by changing the injection angle. A wide range of injection angle from 5 degree to 50 degree have been considered for analysis. A very good defrosting performance has been achieved with 45 degree injection angle which can satisfy the condition of NHTSA.

  • PDF

Basic System Architecture Design for Airport GIS Service Models (Airport GIS 구축을 위한 서비스모델 설계에 관한 연구)

  • Sim, Jae-Yong;Lee, Tong-Hoon;Park, Joo-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.82-94
    • /
    • 2008
  • Airport GIS is a comprehensive information system to improve security and efficiency of airport. At the initial stage to make it real, the current status of domestic and international regulations along with relevant standardization bas been reviewed. Gimpo Airport becomes a test-bed to get some ideas about how to bring the airport GIS into workflow by building service model and basic design based on current status and demand analysis of the airport. The 6 service models primarily brought into the project are as follows: (1) Local vehicles safety management in airside, (2) Intelligent traffic control between flights and vehicles at main cross points, (3) Dynamic safety management against FOD in airside and breakage on pavement, (4) Special support vehicle management such as deicing remotely controlled, (5) Response and support for fire vehicles and ambulances of signatory institutions in emergency. The upcoming research topic aims at drawing a specific design and building integrated system in the future.

  • PDF

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Growth and Physiological Responses of Pinus strobus to CaCl2 (염화칼슘에 의한 스트로브잣나무의 생장 및 생리반응)

  • Je, Sun-Mi;Kim, Sun-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The present study aimed to investigate the effect of calcium chloride($CaCl_2$) on the growth and physiological responses of Pinus strobus and the variables that are sensitive to $CaCl_2$. Thus, changes in the visible damage, growth of root collar diameter, plant water content, chlorophyll content and composition, maximum PS II photochemical efficiency, and electron transport rate of P. strobus was analyzed in relation to treatment witih $CaCl_2$. A $CaCl_2$ solution(0.5, 1.0 and 3.0%) was applied in the root zone before leaf unfolding. Leaf browning, defoliation, and drying were observed with $CaCl_2$ application and this pattern was aggravated as the $CaCl_2$ concentration increased and the treatment period became longer. The decrease of growth in root collar diameter and height and leaf water content were observed at $CaCl_2$ 1.0% and 3.0%. The total chlorophyll content indicated that photopigment, PS II photochemical efficiency and electron transport rate significantly decreased at $CaCl_2$ 3.0%. In conclusion, $CaCl_2$ affected leaf water content and led to a decrease of capability in light harvesting and photochemical responses. Also, as a result of the correlation between calcium chloride concentration and growth and physiological response parameters, it was found that the leaf moisture content and the ratio of chlorophyll a and b reflect the damage level of calcium chloride sensitively because their coefficient of determinations were relatively high.

Effects of CaCl2 on Gas Exchange and Stomatal Responses in the Leaves of Prunus serrulata (염화칼슘이 벚나무 잎의 가스교환 및 기공반응에 미치는 영향)

  • Je, Sun Mi;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • To investigate the effect of calcium chloride ($CaCl_2$) using for deicing salts in winter on gas exchange and stomatal responses of 3-year-old Prunus serrulata, we treated twice (1 L) $CaCl_2$ solution (0.5%, 1.0% and 3.0%) in the root zone before leaf unfolding. Stomatal conductance ($g_s$), photosynthetic rate ($P_n$), transpiration rate ($T_r$) and water use efficiency (WUE) in the leaves of P. serrulata were decreased with increasing of $CaCl_2$ concentration. Even though stomatal conductance and photosynthetic rate were reduced by $CaCl_2$, intercellular $CO_2$ concentration ($C_i$) in $CaCl_2$ treatments has similar or higher values compared with control. These results suggest that non-stomatal limitation as well as stomatal limitation induced the reduction of photosynthetic rate together. On the other hands, treatment of $CaCl_2$ before leaf unfolding also affected leaf morphology traits. We proposed that reductions of stomatal length and leaf size and high pore density with increasing salinity is adaptative mechanism to reduce the water loss in plant.

Evaluation of the Coating Liquid Sprayed on Landscape Plants to Prevent De-icing Stresses - Focus on Chlorophyll Fluorescence Analysis - (조경수목의 제설제 피해저감을 위한 엽면코팅제 처리효과 분석 - 엽록소 형광분석법을 중심으로 -)

  • Kwon, Hee-Bum;Kim, Tae-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.29-36
    • /
    • 2008
  • This study examined the de-icing agents' stresses on Pinus strobus and Pinus thunbergii by chlorophyll fluorescence analysis. The assumption of this study was that photosynthetic efficiency was changed by de-icing agents applied onto highways in winter by altering the concentration of the de-icier, types of de-icer and leaf surface coating liquid application. The practical purpose of this study was to investigate the de-icing gents stresses on Pinus strobus by the highway area where de-icing agents were used frequently and to discover out minimizing stratages to prevent further damages. or this simulation study, a sample plot was established in Bogae-myeon, Anseong, Gyeonggi-do and Pinus strobus and Pinus thunbergii were planted for the examination in April, 2005. Five types of de-icing agents - NaCl, $CaCl_2$, T product(NS40:low cWoride de-icer type), NaCl+$CaCl_2$ and T product+$CaCl_2$ - were selected and the their concentration was altered to 0%, 5%, and 9%. Five types of de-icing agents were applied to both trees treated by a leaf surface coating liquid and trees not treated by leaf surface coating liquid. For the fluorescence analysis, the leaf surface coating liquid, which was diluted by 10 times, was sprkinkled onto the two tree species three days prior to gathering samples. Sample leaves from the two tree species were gathered at 10 o'clock in the morning of mid-August, 2006 and brought to the laboratory within three hours to be dipped in different concentrations (0%, 5%, or 9%) of the five de-icing agents for two minutes. Then the eaves were placed on the filter paper dipped in each solution on a petri dish, sealed with polyethylene film and kept in a growth chamber at $22^{\circ}C$ for 72 hours. Out of the growth chamber, the leaves were treated with a chorophyll fluorescence reaction analyzer for 30 minutes to measure the initial light acceptance rate(Fo), maximum light acceptance ate(Fv/Fm), light acceptance usage(F' q/F' m) and optical electron delivery coefficient(qP). As a result, Pinus strobus' initial light acceptance rate(Fo) decreased as T product and NaCl increased in concentration, and $Cal_2$ did not reduce much with the eaf surface coating liquid application. Maximum light acceptance rate(Fv/Fm) and light acceptance usage(F' q/F' m) decreased sharply as T product and NaCl increased in concentration and NaCl+$CaCl_2$ and T product+$CaCl_2$ did not reduce much with leaf surface coating liquid application. Optical electrons delivery coefficient (qP) decreased as T product increased in concentration on trees without the leaf surface coating liquid application and all other de-icing agents did not show much reduction. As for Pinus thunbergii, the initial light acceptance rate(Fo) decreased as T product increased in concentration, but the maximum light acceptance rate(Fv/Fm) was not reduced much by changes in concentration. light acceptance usage(F' q/F' m) decreased as NaCl increased in concentration and optical electron delivery coefficient(qP) decreased as NaCl increased in concentration in both with and without leaf surface coating liquid application. In conclusion, it was possible to plant Pinus strobus if spraying leaf surface coating liquid or cleaning deicing salt to prevent the damage caused by deicing agents was more economical than replacing the trees. If not, it was better to plant Pinus thunbergii. Another way to decrease the deicing gents stresses of landscape plants would be planting the trees further away from the roads even though it might take longer period to display its planting functions.

Assessment of Salt Resistance and Performances of LID Applicable Plants (LID시설에 적용된 식물의 염분 저항성 및 효과 평가)

  • Choi, Hyeseon;Hong, Jungsun;Lee, Soyung;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2016
  • In LID facilities treating stormwater runoff, various kinds of plants are applied for water circulation recovery and pollutant reduction. However, rapid changes of soil moisture due to the use of porous media and spread of deicing material during winter season cause slow plant growth that detrimentally leads to many problems including death of plants. Therefore, this study was performed to evaluate the salt resistance of plants, its effects on pollutants removal, and water circulation recovery. Eight different kinds of plants applicable to an LID facility were selected for the experiment, which were Bridal wreath (Spiraea japonica, S.J), Azalea (Rhododendron indicum, R.I), Dawn Redwood (Metasequoia glyptostroboides, M.G), Sweet flag (Acorus calamus A.C), Dwarf fan-shape columbine(Aquilegia flabellata, A.F), Pink (Dianthus chinensis, D.C), Pratia pedunculata (Pratia pedunculata, P.B) and Marigold (Tagetes patula, T.P). Woody plants such as S.P, R.I, and M.G appear to have less salt resistance compared to the other herbaceous plants. Specifically, M.G achieved the highest salt resistance among the other woody plants being followed by S.P, and R.I, respectively. For herbaceous plants, T.L and D.C have the higher salt resistances than that of A.C, P.B, and A.F, respectively. Regardless of the influence of salt to most of the plants, TN and TP were reduced more than 60% and the study suggests the M.G showed high pollutant removal efficiency and provided better water circulation by means of active photosynthesis and respiration due to higher growth.

Effect of Calcium Chloride($CaCl_2$) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii (염화칼슘 처리가 산벚나무 엽의 엽록소형광반응과 광합성기구에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.922-928
    • /
    • 2010
  • There is a little information on the effect of calcium cloride ($CaCl_2$) which is used as deicing salt in Korea on the physiological responses of the street trees. Prunus sargentii is one of the most widespread tree species of street vegetation in Korea. In this study, the effect of $CaCl_2$ on photosynthetic apparatus such as chlorophyll fluorescence image and light response curve of P. sargentii in relation to their leaf and root collar growth responses were investigated. To study the effect of $CaCl_2$ treatment in the early spring, we irrigated twice in rhizosphere of P. sargentii (3-year-old) planted plastic pots with solution of 0.5%, 1.0%, 3.0% $CaCl_2$ concentration before leaf expansion. Results after treatments, total chlorophyll contents and the chlorophyll a/b, photosynthetic rate, quantum yield, dark respiration decreased with increasing $CaCl_2$ concentration. On the contrary, light compensation point increased with increasing $CaCl_2$ concentration. Through the linear regressions of correlation of photosynthetic rate with photosynthetic parameters (quantum yield, dark respiration and light compensation point), we found a significant relationship (p<0.05) between photosynthetic rate and quantum yield and light compensation point except dark respiration. Calcium cloride ($CaCl_2$) induced inhibition of photochemical efficiency ($F_v/F_M$) and non-photochemical quenching (NPQ) were found in treatments of $CaCl_2$, and these reduction rates between control and CaCl2 treatments were drastically showed at 80 days. We suggest that physiological activities are limited from treatment of $CaCl_2$. These reductions of photosynthetic apparatus ability caused eventually the reduction of leaf and diameter at root collar growth.