• Title/Summary/Keyword: Deicing Salt

Search Result 53, Processing Time 0.02 seconds

Evaluation of Deicing Performance for the Eco-Friendly Deicer (친환경 제설제의 융빙성능 평가)

  • Lee, Kyung-Bae;Lee, Seung-Woo;Yoo, Hyung-Mok;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.15-26
    • /
    • 2008
  • Recently, various damages such as corrosion of rebar, scaling on concrete pavement and environmental deteriorations caused by using the chloride-containing deicer have been reported. To solve these problems, several substitute deicers have been developed by other researchers. However, studies on evaluation of performance for the developed deicers have been limited in the basic laboratory testing. It is necessary to establish the resonable and systematic test procedure for evaluating the deicing performance. In this study, rational and practical test methods were set up through literature review and deicing performance of Eco-Friendly Deicer(EFD), which is a kind of low chloride-containing deicer developed by our research group, was evaluated by the presented test methods. As results of the laboratory tests, initial deicing performance of EFD was similar with that of Pre-Wetted Salt(PWS) which has been used in highway deicing and it was verified by executed field tests in twice that EFD had passable deicing performance compare with PWS.

  • PDF

Evaluation on the Effects of Deicing Salts on Crop using Seedling Emergence Assay of Oilseed Rape (Brassica napus) (유채의 출아 검정을 통한 제설제의 작물 영향 평가)

  • Lim, Soo-Hyun;Yu, Hyejin;Lee, Chan-Young;Gong, Yu-Seok;Lee, Byung-Duk;Kim, Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • The increasing use of deicing salts has caused various environmental problems, including crop damage along the motorway where deicing salts are sprayed during winter. Deicing salts used on roads have been reported to negatively affect crops, but little information is known about their impact on crops. A seedling emergence assay was conducted to evaluate the effects of deicing salts on crops using oilseed rape (Brassica napus) as a model plant. We tested five chloride deicing salts consisting of NaCl, CaCl2, or MgCl2 and 1 non-chloride deicing salt (SM-3) at a range of concentrations (25, 50, 100, 200, and 400 mM), and untreated control. Regardless of deicing salts, they significantly delayed and reduced seedling emergence of oilseed rape with increasing salt concentration. Non-linear regression analysis of seedling emergence with a range of salt concentrations by fitting to the log-logistic model revealed that the chloride deicing salts reduced seedling emergence more than the non-chloride deicing salt SM-3. The GR50 value, the concentration causing 50% seedling emergence, of SM-3 was 47.1 mM, while those of the chloride deicing salts ranged from 30.7 mM (PC-10) to 37.5 mM (ES-1), showing approximately 10 mM difference between non-chloride and chloride deicing salts. Our findings suggest that seedling emergence assay is a useful tool to estimate the potential damage caused by deicing salts on crops.

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.

제설제가 고속도로 주변토양에 미치는 영향

  • Lee Ju-Gwang;Lee Byeong-Deok;Gang Hye-Jin;Gang Hui-Man
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.226-229
    • /
    • 2006
  • Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Finding the deicing chloride agents impacts on the environment and develop the minimizing strategies, we evaluated that chloride deicing agents influence on highway roadside soil and establish the optimun strategies.

  • PDF

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.

Characteristics of Chloride Penetration with Deicer Types (제설제 종류에 따른 염화물 침투 특성)

  • Choi, Yoon-Suk;Kim, Kang-Rea;Kim, Myung-Yu;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.549-552
    • /
    • 2006
  • Deicing salt has been generally used for prevention of a road freezing in winter, and the amount is increasing every year. However, deicing salt may induce the decrease of bond strength, surface scaling, and environmental pollution, etc. The purpose of this paper is to suggest the fundamental data on safety and durability for concrete structures through the estimation of characteristics of chloride penetration with deicer types. According to the test results, as age of concrete is increased, chloride penetration depth is also increased independent of deicer types. However, there is no remarkable difference between deicer types. And when the estimation of chloride diffusion is carried out by immersion test, diffusion coefficient is decreased with ages, and short-term estimation may overestimate the coefficient.

  • PDF

A study of effects on environment from road deicings (제설제가 환경에 미치는 영향 연구)

  • 신진호;허항록;신정식;김민영;신재영
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.31-37
    • /
    • 2001
  • Deicers have used for melting snow on the road during winter season, but they have largely influenced on environment and public assets and human health. The pollution level of snow and soil contained deicer was analyzed and evaluated the characteristics of deicers. The results were as follows 1. In the result of measurement of pollutants in snow contained deicer, the pH was a little higher than a comparative group and the concentration of $Cl^{-}$ ranged from 0.5% to 0.87%, and the electric conductivity ranged 12.4 to 24.6 mmho/cm. The concentration of Cd, As, and Hg was not detected, but those of Cu, Pb, Cr was higher than a comparative group. 2. In soil of the road spreaded with deicer, the pH is getting alkalized and the concentration of $Cl^{-}$ was high in January and returned the level of a comparative grout) in November by physical and chemical reaction with deicer, but the concentration of heavy metals were not connected with deicers. 3. In comparison of deicing efficiency, the concentration of $Cl^{-}$ was 3.3~5times high in spreading with deicer before snowing than after snowing. The concentration of $Cl^{-}$ in NaCl was higher than $CaCl_2$, but the deicing efficiency of Nacl was better than that of $CaCl_2$. Moreover, the new deicer have no salt, but deicing efficiency of new deicer was less than that of NaCl and $CaCl_2$.

  • PDF

A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw (동결융해 및 제설제에 노출된 고속도로 소구조물 콘크리트의 내구성 개선 연구)

  • Lee, Byung-Duk;Choi, Yoon-Suk;Kim, Young-Geun;Choi, Jae-Seok;Kim, Il-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.128-135
    • /
    • 2016
  • In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and deicing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and deicing salt is rapidly degraded and reduce its service life. In this study, the exposure environmental condition according the regional highway points were established. The damage condition and chloride content of the concrete at general and severe environmental exposure condition were also investigated. In addition, the experimental test of chloride ion permeability, scaling resistant and freeze-thaw resistance were carried out to improve the durability of the mechanical placing concrete of subsidiary structure. According to the results of this study, in observation of concrete surface condition, the concrete exposed by severe environmental condition showed broad ranges of damage with high chloride contents. Meanwhile, the water-binder(W/B) ratio and the less water content, and fly ash concrete than the specified existing mix proportion is significantly improved the durability. Also, the optimal mix proportion derived for test is satisfied the strength and air contents, water-binder ratio, and durability criteria of concrete specifications, as well as service life seems greatly improved.

Evaluation of Salt Tolerance of Liriope platyphylla and Pachysandra terminalis to Deicing Salt (CaCl2) Concentration in Winter (겨울철 제설제(CaCl2)농도처리에 따른 맥문동과 수호초의 내염성 평가)

  • Ju, Jin-Hee;Hui, Xu;Park, Ji-Yeon;Choi, Eun-Young;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.651-657
    • /
    • 2016
  • It is important to know know deleterious impact of deicing salt on plants for guidelines of planting along roads. The aim of this study was to determine the effect of calcium chloride ($CaCl_2$) on the growth and physiological characteristics of Liriope platyphylla and Pachysandra terminalis. The plants were grown from November of 2015 to March of 2016 in pots containing growing media with $CaCl_2$ at 0% (Control), 0.5%, 1.0%, 3.0%, and 5.0% (based on the weight). While plant growth and photosynthetic activity were significantly decreased in both plant species grown on the media with $CaCl_2$, the degree of sensitivity to $CaCl_2$ differed. The plant growth of Liriope platyphylla was considerably injured under higher than 3.0% of $CaCl_2$, whereas Pachysandra terminalis was all dead under higher than 1.0% of $CaCl_2$. This results indicate that Liriope platyphylla has higher degree of tolerance to the deicing salt than Pachysandra terminalis.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.