• 제목/요약/키워드: Dehydrogenase

검색결과 2,834건 처리시간 0.034초

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • 제9권3호
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Effects of Dolomite and Oyster Shell on Nitrogen Processes in an Acidic Mine Soil Applied with Livestock Manure Compost

  • Yun, Seok-In;Seo, Dong-Hyuk;Kang, Ho Sang;Cheng, Hyocheng;Lee, Gunteak;Choi, Woo-Jung;Lee, Chang-Kyu;Jung, Mun Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제49권5호
    • /
    • pp.614-620
    • /
    • 2016
  • Mine soils are usually unfavorable for plant growth due to their acidic condition and low contents of organic matter and nutrients. To investigate the effect of organic material and lime on nitrogen processes in an acidic metal mine soil, we conducted an incubation experiment with treating livestock manure compost, dolomite, and oyster shell and measured soil pH, dehydrogenase activity, and concentration of soil inorganic N ($NH_4{^+}$ and $NO_3{^-}$). Compost increased not only soil inorganic N concentration, but also soil pH from 4.4 to 4.8 and dehydrogenase activity from 2.4 to $3.9{\mu}g\;TPF\;g^{-1}day^{-1}$. Applying lime with compost significantly (P<0.05) increased soil pH (5.9-6.4) and dehydrogenase activity ($4.3-7.0{\mu}g\;TPF\;g^{-1}day^{-1}$) compared with applying only compost. Here, the variation in dehydrogenase activity was significantly (P<0.05) correlated with that in soil pH. Soil inorganic N decreased with time by 14 days after treatment (DAT) due to N immobilization, but increased with time after 14 DAT. At 28 DAT, soil inorganic N was significantly (P<0.05) higher in the lime treatments than the only compost treatment. Especially the enhanced dehydrogenase activity in the lime treatments would increase soil inorganic N due to the favored mineralization of organic matter. Although compost and lime increased soil microbial biomass and enzyme activity, ammonia oxidation still proceeded slowly. We concluded that compost and lime in acidic mine soils could increase soil microbial activity and inorganic N concentration, but considerable ammonium could remain for a relatively long time.

Inhibitory Effect of Prunus mune Extracts on Physiological Function of Food Spoilage microorganisms (매실추출물이 변패미생물의 생리기능에 미치는 영향)

  • Ha, Myung-Hee;Park, Woo-Po;Lee, Seung-Cheol;Heo, Ho-Jin;Oh, Byung-Tae;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • 제14권3호
    • /
    • pp.323-327
    • /
    • 2007
  • Moderate consumption of maesil(Prunus mune) was associated with pharmaceutical and physiological effects on human health. The object of this study was to determine the inhibitory effects of Prunus mune extracts(PME) on food spoilage microorganisms. PME was found to have an antibacterial effect on Colletotrichum fragariae. The hydrophilic fractions of PME showed more effective inhibition than did the hydrophobic fractions. In addition, the hydrophilic fractions of PME seemed to inhibit(12-40%) metabolic enzymes related to energy production, including glucose-6-phosphate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and hexokinase. Our data suggest that hydrophilic components of PME might control food spoilage microorganisms because of suppression of membrane enzymatic function.

Cloning and Nucleotide Sequence Analysis of xylC Gene Encoding 5C-2HMS Dehydrogenase from Pseudomonas sp. S-47. (Pseudomonas sp. S-47로부터 5-Chloro-2-Hydroxymuconic Semialdehyde Dehydrogenase를 암호화하는 xylG 유전자의 클로닝 및 염기서열 분석)

  • Park, Song-Yi;Lee, Dong-Hoon;Kim, Young-Soo;Lee, Kyung;Kim, Chi-Kyung
    • Microbiology and Biotechnology Letters
    • /
    • 제30권1호
    • /
    • pp.8-14
    • /
    • 2002
  • Pseudomonas sp. S-47 is capable of degrading 4-chlorobenzoate to produce 5-chloro-2-hydroxymuconic semialdehyde (5C-2HMS) by the enzymes encoding by xylXYZLTE cluster. In this study, the resulting 5C-2HMS was confirmed to be transformed to 5-chloro-2-hydroxymuconic acid (5C-2HMA) by 5C-2HMS dehydrogenase. The xylG gene encoding 5C-2HMS dehydrogenase was cloned from the chromosomal DNA of strain S-47. The nucleotide sequence of xylG showed to be composed of 1,600 base pairs with ATG initiation and TGA termination codons. A deduced amino acid sequence of the 5C-2HMS dehydrogenase (XylG) exhibited 98%, 93%, and 89% identity with those of the dehydrogenases from P. putida mt-2, P. putida G7, and Pseudomonas sp. CF600, respectively.

Effects of Cudrania Tricuspidata Root Extract (CTE) on Ethanol-Induced Hangover via Modulating Alcohol Metabolizing Enzyme Activities and Blood Gas Levels in Rats (꾸지뽕나무 뿌리 추출물의 알코올 대사 효소 활성 및 혈액 산성화 기전 조절을 통한 숙취해소 효과)

  • Choi, Na-Eun;Ro, Ju-Ye;Lee, Ju-Yeong;Ryu, Jin-Hyeob;Cho, Hyun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제18권2호
    • /
    • pp.218-225
    • /
    • 2017
  • To investigate the anti-hangover effects of Cudrania tricuspidata root extract (CTE), the blood alcohol metabolism and blood gas imbalance of CTE in rats treated with 10 ml/kg alcohol were examined. CTE (500 mg/kg and 750 mg/kg) was administrated after 30 minutes of alcohol consumption (10 ml/kg). Blood collection was implemented from the tails of the animals after 1, 3, and 5 hours post alcohol consumption. The Condition drink (a commercial anti-hangover beverage) was used as a positive control. Single administration by the oral route was performed. The consumption of CTE (500 mg/kg and 750 mg/kg) decreased the serum alcohol concentration by increasing and maintaining both the alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) enzyme activity levels in the blood and liver. In addition, CTE led to recovery from the imbalances in the blood gas levels, including carbon dioxide ($CO_2$) and changes in pH, bicarbonate ($HCO_3{^-}$) and lactic acid levels due to alcohol ingestion. In conclusion, CTE exerted a more pronounced anti-hangover effect than a commercial anti-hangover drink. Therefore, CTE can be a novel and safe anti-hangover natural product agent for the prevention or treatment of symptoms caused by excessive alcohol consumption.

Effects of Metal-ions on Enzyme Activities from Hansenula anomala B-7 Grown in Medium Containing Cadmium (카드뮴 함유 배지에서 배양된 Hansenula anomala B-7의 Malate Dehydrogenase 활성에 미치는 금속 이온의 영향)

  • Yu, Tae Shick
    • Korean Journal of Microbiology
    • /
    • 제34권4호
    • /
    • pp.225-230
    • /
    • 1998
  • This study was carried out to investigate the effect of cadmium ion on activities of cadmium-adapted malate dehydrogenase (adapted-MDH), which is defined to be an enzyme obtained from an extreme cadmium-tolerant yeast Hansenula anomaul B-7 grown in medium containing 1 mM cadmium ion. Cadmium-nonadapted malate dehydrogenase (nonadapted-MDH), which is defined to be enzyme expressed in the cells grown in $Cd^{2+}$ -free medium was also characterized by the same manner. Activities of the adapted-MDH and the nonadapted-MDH were strongly induced to 450% and to 150% in comparision with the control examined with 1 mM $Cd^{2+}$, respectively. The adapted-MDH activity was stimulated to 147%, 150%, and 135% compared with the control analyzed with 1 mM $Zn^{2+}$, 1 mM $Mn^{2+}$, and 1 mM $Ca^{2+}$, respectively and to 925%, and 250% compared with the control analyzed in the presence of 2 mM $Cd^{2+}$, and 2.5 mM $Zn^{2+}$, respectively. Km values of the adapted-MDH and the nonadapted-MDH were calculated to be the same 6.9 mM for L-malate, respectively. The Km value of the nonadapted-MDH was not changed by $Cd^{2+}$ while Vmax of the nonadapted-MDH was increased by $Cd^{2+}$. In contrast, both the Km and the Vmax values of the adapted-MDH were changed by $Cd^{2+}$.

  • PDF

Determination of the pKa for Histidine-51 Residue in the Ternary Compelx of Horse Liver Alcohol Dehydrogenase

  • Lee, Kang-Man;Son, Su-Yeon
    • Archives of Pharmacal Research
    • /
    • 제15권3호
    • /
    • pp.229-233
    • /
    • 1992
  • The pKa value of histidine-51 residue was determined by the pH dependency of contents of NADH bound to the active site in the orse liver alcohol dehydrogenase and % inactivation with diethyl pyrocarbonate treatment of the enzyme. The pKa for His-51 was -7.15 in the ternary complex and -6.7 in the enzyme itself.

  • PDF

Effects of Mercuric Ion on Lactic Dehydrogenase Isozyme in the Organs of Albino Rats. (수은 Ion이 백서장기내 Lactic Dehydrogenase Isozyme에 미치는 영향)

  • 이해금
    • YAKHAK HOEJI
    • /
    • 제19권1호
    • /
    • pp.36-46
    • /
    • 1975
  • In the rats administered mercuric chloride (1mg/kg/48 hrs i.p.), it was found that LDH$_{1}$ and LDH$_{2}$ were increased in heart, brain and kidney as well as LDH$_{5}$ increased in liver and muscle in the duration of sixteen days. After the sixteen days of administration, the LDH isozyme patterns in the above mentioned organs were found to be irregularly changed. Considerable amount of mercury accumulation in liver and kidney were found, and especially the mercury accumulation in kidney was notable.

  • PDF

Chloroplastic NAD(P)H Dehydrogenase Complex and Cyclic Electron Transport around Photosystem I

  • Endo, Tsuyoshi;Ishida, Satoshi;Ishikawa, Noriko;Sato, Fumihiko
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.158-162
    • /
    • 2008
  • Recent molecular genetics studies have revealed that cyclic electron transport around photosystem I is essential for normal photosynthesis and growth of plants. Chloroplastic NAD(P)H dehydorgenase (NDH) complex, a homologue of the complex I in respiratory electron transport, is involved in one of two cyclic pathways. Recent studies on the function and structure of the NDH complex are reviewed.

Comparison of LDH isozymes in several vertebrates (수종척추동물의 LDH isozyme에 대한 비교생화학적 연구)

  • 임중기
    • YAKHAK HOEJI
    • /
    • 제16권1호
    • /
    • pp.34-46
    • /
    • 1972
  • Lactate dehydrogenase isozymes in heart, kidney, liver and skeletal muscle of 15 species of vertebrate animals belonging to 5 classes were separated by cellulose acetate electrophoresis and the levels of them were measured and compared with each other. Lactate dehydrogenase isozyme patterns were different from each other among animal species and among tissues. The activity of LDH$_{5}$ was superior in anaerobic tissues such as liver and skeletal muscle, and the activity of LDH$_{1}$ was superior in aerobic tissues such as heart and kidney. The level of LDH of vertebrate animals of the 5 classes has found approximatry increasing in the following order: Pisces>Amphibia>Reptelia

  • PDF