• Title/Summary/Keyword: Degumming

Search Result 96, Processing Time 0.021 seconds

Silk Degumming by Electrolyzed Alkaline Water (전해 알칼리수에 의한 견의 정련)

  • Kim, Yung-Dae;Chung, In-Mo;Lee, Kwang-Gill
    • Journal of Sericultural and Entomological Science
    • /
    • v.47 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • This studies were carried out to develop the new silk degumming method by elelectrolyzed alkaline water on the silk degumming process. Using to this method, it could be collect pure sericin from the degumming water, because the degumming water by elelectrolyzed alkaline water was not contaminated by chemicals including soap. The range of elelectrolyzed alkaline water was pH 11.5 to 11.7 and maintained the first value for 8 days under the cool and closed conditions. The degumming ratio of silk was higher in elelectrolyzed alkaline water(pH 11.5~11.7)than that of soap and alkaline bath. When the pH value of elelectrolyzed alkaline water was adjusted at pH 11.0, the degumming ratio of silk was similar to that of soap and alkaline degumming. After degumming the pH value of degumming water decreased largely in the elelectrolyzed alkaline water compared to that of soap and alkaline bath. The tenacity and elongation of degummed silk by elelectrolyzed alkaline water was almost same those of soap and alkaline degumming for 90 min.

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

Degumming of Antheraea yamamai silkworm cocoon

  • Shin, Bong-Seob;Jeon, Jong-Young;Kim, Jong-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.127-131
    • /
    • 2015
  • Oak silkworm, Antheraea yamamai (A. yamamai), has been used for clothing and surgical suture and considered as biomaterial due to RGD tripeptide. This paper reported the degumming conditions of A. yamamai using sodium oleate, high pressure and temperature, and sodium carbonate. Degumming ratio of A. yamamai cocoon using sodium oleate was less than 10%. High pressure and temperature treatment induced 30% weight loss of A. yamamai cocoon. The concentration, treatment temperature and time using sodium carbonate was examined and revealed the following conditions for degumming; 5% owf, 60 min at 100℃. The degummed solution was confirmed using UV and FT-IR spectrometer. Our results can be used to handle A. yamamai silkworm cocoon for further application including material processing.

Effect of Surfactant on Homogeneity of Partially Degummed Silk Fiber

  • Chung, Da Eun;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • Silk has always been one of the most favored textile materials. Fully degummed silk fiber (i.e., silk fibers without sericin) shows better luster than raw silk fiber (with sericin); it is also softer. On the other hand, raw silk fiber feels cooler because of the presence of sericin, making it useful as a textile for the summer season. Recently, partially degummed silk has attracted researchers' attention because it provides better luster, feel, and dyeing properties. However, the partial degumming of silk is very difficult because it results in inhomogeneously degummed fiber. In the present study, silk yarns were degummed with surfactant aqueous solutions and the effects of each surfactant on the degumming ratio, crystallinity, and homogeneity of the degummed silk yarn were examined. The degumming ratio and crystallinity index of silk yarn varied depending on the type of surfactant. On the whole, anionic surfactants resulted in higher degumming ratios and better homogeneity than nonionic surfactants.

Physicochemical Characteristics of Silk Fibroin Degummed by Protease in Bacillus licheniformis II. Behavior in Aqueous Solution of Silk fibroin (Bacillus licheniformis 단백질 분해 효소에 의한 정련 견사의 특성 III. 견 피브로인 수용액의 거동)

  • 김영대;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.60-68
    • /
    • 1993
  • It has been known that the silk degumming treated by hot alkali solution is easy to handle but is liable to yield poor-quality silk due to the degree of degumming loss, incomplete-degumming or over-degumming. Therefore, many studies have been carried out on the silk degumming by enzyme in order to improve the quality of silk. However, no attention has been paid to the physicochemical analysis of enzymatic degummed silk. In this paper, two different degumming methods, soap and enzymatic, are compared in aqueous solution state of silk fibroin. The results can be summarized as follows: There was no significant difference between two solutions on the bases of polarizing microscopy, TEM observation and SDS-PAGE. Spherulite of silk fibroin was not observed in polarizing microscopy, however the leaf-shape fibril structure was developed upon solidification. The size of spherulites of silk fibroin in TEM observation were 30~120nm with a wide range of size distribution. The intrinsic viscosity of enzymatic degummed fibroin solution was lower than that of soap degummed solution. This can be explained that the silk fibroin was more degraded by enzymatic degumming method compared with the soap degumming method. SDS-polyacrylamide gel electrophoresis showed that the fibroin molecule was composed of large component of molecule weight above 50 kd and small component of molecule weight about 20 kd. There was no difference in crystallinity between two degumming methods on the bases of results of DSC thermograms and IR spectra.

  • PDF

Degumming Effect on Vegetable oil of Degumming agent (각종 탈검제에 의한 식물성 기름의 탈검효과)

  • 김덕숙;안명수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • The almost similar degumming effect was obtained by using oxalic acid instead of phosphoric acid, which also improves waste-water treatment. At this point, solution of Phosphoric, Acetic, Citric, Oxalic, and Nitric acid were used for degumming of rapeseed and soybean oil. Compared with Phosphoric(PA) and Oxalic acid(OA) were showed a simillar degumming effect in these vegetable oils. In rapeseed oil of 85% PA treating group and 5,10% OA fretting group, residual soap and phosphorus content in neutralized oil, color in bleached oil, and peroxide value and fatty acid content in deodrized oil were showed to simillar result. Soybean oil as well as rapeseed oil were showed to similar result. As a result, we could comfirmed substitutive possibility, which change PA into OA as a degumming agent. In the other hand, waste waters were obtained from 55% PA treating group and 10% OA treating group. Analytical result for this waste waters has showed a wide difference, especially in the BOD and COD. The amount of treating agents and time required in the precipitation seperation and chemical treatment each 3 and 1.7 times, which is PA treating group than OA treating group. We have investigated both the simillar degumming effect by OA solution and an alternative the pollution program means of a chemical treatment process is not possible.

  • PDF

The Study on the Weight loss Finishing for the mixture Silk/Polyester II. The Weight loss Finishing for the Spun silk/Polyester (Silk/Polyester 혼섬유 재료의 감량가공에 관한 연구 II. Spun silk/Polyester 혼섬유의 감량가공)

  • 배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.1
    • /
    • pp.53-57
    • /
    • 1994
  • The weight loss for the mixture (spun silk/PET) was tested to investigate the effects of weight loss accelerator on the degumming and weight loss. The degumming loss of spun silk was decreased while the wigth loss of polyester(PET) was increased depending on the increased of weight loss accelerator concentration. The proper degumming of spun silk was obtained and simultaneously the weight loss of PET was high for the spun silk/PET "A" and "B" type. The proper degumming of spun silk was obtained but the weight of PET was loss for the spun silk/PET "D" and "E" type. The degumming curve in spun silk part was showed the typical degumming curve but the weight loss of PET was increased depending on the increased of treatment time in the weight loss for the fabric composed of spun silk/PET.or the fabric composed of spun silk/PET.

  • PDF

Physicochemical Characteristics of Silk Fibroin Degummed by Protease in Bacillus licheniformis II. Effect of Heat Treatment onto Degummed Silk Fiber (Bacillus licheniformis 단백질 분해 효소에 의한 정련 견사의 특성 II. 정련 견사의 열처리 영향)

  • 김영대;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.52-59
    • /
    • 1993
  • Raw silk degumming, by which the sericin and other marterials are eliminated from fibroin, is very essential process to produce silk fabrics. Alkali chemicals and enzymes have been used for the silk-degumming process. In this paper, the effect of heat treatment was investigated on silk fibers degummed by two different methods, soap and enzymatic degumming method. The difference between these two degumming methods was analyzed on the basis of results of mechanical testing, thermal analysis and intrated spectroscopy. The tenacity and the elongation of silk fiber are decreased by the heat-treatment in wet state. This tendency is observed in both cases of two degumming methods. The peak temperature in DSC analysis, which is attributed to thermal decomposition of silk fiber, was shifted to higher value with the heat-treatment temperature for the soap degummed silk fiber, however, it was not for the enzymatic degummed one. The IR crystallinity of soap digummed silk fiber is increased with the heat-treatment temperature, while that of enzymatic degummed fiber is not.

  • PDF

A Study on Enzymatic Degummings of Raw Silk and Silk Fabric (견의 효소 정련에 관한 연구)

  • Lee, Yong-U;Song, Gi-Won;Jeong, In-Mo
    • Journal of Sericultural and Entomological Science
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 1986
  • The studies were carried out to screen the optimum conditions for enzymatic degumming of raw silk yarn and silk fabric by use of Alkalase, a protease produced by Bacteria, comparing with Papain and Trypsin representing natural proteolytic enzymes. 1. The optimum temperature and acidity of degumming solution were 70$^{\circ}C$, pH 5-6 for Papain degumming, 40$^{\circ}C$, pH 8 for Trypsin and 50-60$^{\circ}C$ pH 8-9 for Alkalase. 2. By increasing the Alkalase concentration in the range of 0.6 to 1.0 gram per liter, the time for enzymatic degumming of silk yarn could be reduced by 40 minutes. 3. In degumming of silk yarn by Alkalase, the pretreatment of 95$^{\circ}C$, 10 minutes at 0.1% sodium bicarbonate solution or posttreatent of 80$^{\circ}C$, 20 minutes at 2% (o.w.f.) sodium silicate solution improved the efficiency of enzymatic degumming, as compared to that of nontreatment. 4. The breaking strength, elongation and Lousiness results of enzymatically degummed silk yarn were apt to be improved more than those of soap-degummed one. 5. When the pretreatment of alkaline solution was done with over 20% of degumming ratio, the enzymatic degumming efficiency of both Havutae and Crepe de chine could be reached to the same level with those of soap-soda degummed. 6. As the pretreated silk fabric with 20% of degumming ratio was under action of three proteases, respectively, the deumming efficiency of Havutae and Crepe de chine were completed by Alkalase more than by Papain or Trpysin. 7. The stiffness of enzymatically degummed Crepe de chine was not only reduced by 17% more than that of soap-soda degummed one but also the Drape coefficient was decreased in enzymatically degummed fabrics, which was closely related with the soft touch of degummed fabrics.

  • PDF

Effect of degumming on structure and mechanical properties of silk textile made with silk/polyurethane core-spun yarn

  • Bae, Yeon Su;Kim, Chun Woo;Bae, Do Gyu;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.132-137
    • /
    • 2016
  • Although silk textile shows excellent performance when used in clothing over a long period, its limited elongation and elasticity have restricted its extension to other textile and non-textile applications. In the present study, silk textile was produced using silk/polyurethane core-spun yarn and degummed to enhance its elongation and elasticity. The effects of degumming on the structure and mechanical properties of the silk textile were examined. Scanning electron microscopy observation revealed that the silk filaments became finer and more flexible with degumming, resulting in increased tangling of weft yarns and a highly shrunk textile structure in the weft direction. Although the strength of the degummed silk textile was decreased, its elongation greatly increased by 383% (a 16-fold increase) because of the degumming treatment. In particular, the elasticity of the silk textile was greatly improved. The silk textile exhibited ~30% reduction in the elongation after the second extension; however, the elongation almost did not change after 18 additional extension-recovery tests.