• Title/Summary/Keyword: Degree of Membership

Search Result 147, Processing Time 0.02 seconds

Region Based Fuzzy Neural Networks for Face Detection (영상영역 기반 퍼지 신경망을 이용한 얼굴 검출)

  • 이창수;이정훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2001
  • 본 논문에서는 디지털 영상에서 얼굴 영상 검출을 위해 픽셀의 퍼지 소속도를 이용하여 신경망으로 학습하는 퍼지 신경망을 이용한 얼굴영상 검출을 제안한다. 입력 영상의 피라미드 영상에서 추출된 20$\times$20 윈도우 영상 안의 각 픽셀의 소속도로 얼굴 영상 패턴을 학습하여 얼굴 영상을 검출하는 방법은 단순히 영상의 픽셀 값 하나씩만을 고려해서 각 픽셀의 소속도를 고려하여 수행하는 얼굴 영상 분할보다 얼굴 영상을 더 정확하고 인식률이 높게 검출해 낼 수 있다.

  • PDF

An adaptive Fuzzy Binarization (적응 퍼지 이진화)

  • Jeon, Wang-Su;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.485-492
    • /
    • 2016
  • A role of the binarization is very important in separating the foreground and the background in the field of the computer vision. In this study, an adaptive fuzzy binarization is proposed. An ${\alpha}$-cut control ratio is obtained by the distribution of grey level of pixels in a sliding window, and binarization is performed using the value. To obtain the ${\alpha}$-cut, existing thresholding methods which execution speed is fast are used. The threshold values are set as the center of each membership function and the fuzzy intervals of the functions are specified with the distribution of grey level of the pixel. Then ${\alpha}$-control ratio is calculated using the specified function and binarization is performed according to the membership degree of the pixels. The experimental results show the proposed method can segment the foreground and the background well than existing binarization methods and decrease loss of the foreground.

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.357-365
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

Binarization Method of Night Illumination Image with Low Information Loss Using Fuzzy Logic (퍼지논리를 이용하여 정보손실이 적은 야간조명 영상의 이진화 방법 연구)

  • Lee, Ho Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.540-546
    • /
    • 2019
  • This study suggests a binarization method that minimizes information loss for night illumination images. The object of the night illumination image is an image which is not focused due to the influence of illumination and is not identifiable. Also, the image has a brightness area in only a part of the brightness histogram. So the existing simple binarization method is hard to get good results. The proposed binarization method uses image segmentation method and image merging method. In the stepwise divided blocks, we divide into two regions using the triangular type of fuzzy logic. The value 0 of the membership degree is binarized at the present step, and the value of the membership degree 1 is binarized after the next step. Experimental results show that night illumination images with minimal loss of information can be obtained in a dark area brightness range.

An Intelligent Self Health Diagnosis System using FCM Algorithm and Fuzzy Membership Degree (FCM 알고리즘과 퍼지 소속도를 이용한 지능형 자가 진단 시스템)

  • Kim, Kwang-Baek;Kim, Ju-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • This paper shows an intelligent disease diagnosis system for public. Our system deals with 30 diseases and their typical symptoms selected based on the report from Ministry of Health and Welfare, Korea. Technically, the system uses a modified FCM algorithm for clustering diseases and the input vector consists of the result of user-selected questionnaires. The modified FCM algorithm improves the quality of clusters by applying symmetrically measure based on the fuzzy theory so that the clusters are relatively sensitive to the shape of the pattern distribution. Furthermore, we extract the highest 5 diseases only related to the user-selected questionnaires based on the fuzzy membership function between questionnaires and diseases in order to avoid diagnosing unrelated disease.

  • PDF

Function Approximation for accelerating learning speed in Reinforcement Learning (강화학습의 학습 가속을 위한 함수 근사 방법)

  • Lee, Young-Ah;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.635-642
    • /
    • 2003
  • Reinforcement learning got successful results in a lot of applications such as control and scheduling. Various function approximation methods have been studied in order to improve the learning speed and to solve the shortage of storage in the standard reinforcement learning algorithm of Q-Learning. Most function approximation methods remove some special quality of reinforcement learning and need prior knowledge and preprocessing. Fuzzy Q-Learning needs preprocessing to define fuzzy variables and Local Weighted Regression uses training examples. In this paper, we propose a function approximation method, Fuzzy Q-Map that is based on on-line fuzzy clustering. Fuzzy Q-Map classifies a query state and predicts a suitable action according to the membership degree. We applied the Fuzzy Q-Map, CMAC and LWR to the mountain car problem. Fuzzy Q-Map reached the optimal prediction rate faster than CMAC and the lower prediction rate was seen than LWR that uses training example.

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Color Analysis with Enhanced Fuzzy Inference Method (개선된 퍼지 추론 기법을 이용한 칼라 분석)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.25-31
    • /
    • 2009
  • Widely used color information recognition methods based on the RGB color model with static fuzzy inference rules have limitations due to the model itself-the detachment of human vision and applicability of limited environment. In this paper, we propose a method that is based on HSI model with new inference process that resembles human vision recognition process. Also, a user can add, delete, update the inference rules in this system. In our method, we design membership intervals with sine, cosine function in H channel and with functions in trigonometric style in S and I channel. The membership degree is computed via interval merging process. Then, the inference rules are applied to the result in order to infer the color information. Our method is proven to be more intuitive and efficient compared with RGB model in experiment.

A Study on a neural-Net Based Call admission Control Using Fuzzy Pattern Estimator for ATM Networks (ATM망에서 퍼지 패턴 추정기를 이용한 신경망 호 수락제어에 관한 연구)

  • 이진이;이종찬;이종석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.173-179
    • /
    • 1998
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neural net, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Menas) arithmatics, to decide whether a requested call that is not trained in learning phase to be connected or not. The system generates the estimated traffic pattern of the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmatics. The input to the NN is the vector consisted of traffic parameters which is the means and variances of the number of cells arriving inthe interval. After training(using error back propagation algorithm), when the NN is used for decision making, the decision as to whether to accept or reject a new call depends on whether the output is greater or less then decision threshold(+0.5). This method is a new technique for call admi sion control using the membership values as traffic parameter which declared to CAC at the call set up stage, and is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simmulation. it is founded the performance of the suggested method outforms compared to the conventional NN method.

  • PDF