• Title/Summary/Keyword: Degraded mode

Search Result 102, Processing Time 0.026 seconds

Extraction of the JEM Component in the Observation Range of Weakly Present JEM Based on Complex EMD (복소 EMD를 이용한 미약한 JEM의 관측 범위에서 JEM 성분의 추출)

  • Park, Ji-Hoon;Yang, Woo-Yong;Bae, Jun-Woo;Kang, Seong-Cheol;Kim, Chan-Hong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.700-708
    • /
    • 2014
  • Jet engine modulation(JEM) is a frequency modulation phenomenon of the radar signal induced by electromagnetic scattering from a rotating jet engine turbine. Although JEM can be used as a representative radar target recognition method by providing unique information on the target, its recognition performance may be degraded in the observation range of weakly present JEM. Hence, this paper presents a method for extracting the JEM component by decomposing the radar signal into intrisic mode functions(IMFs) via complex empirical mode decomposition(CEMD) and by combining them based on signal eccentricity. Its application to various signals demonstrated that the proposed method improved the clarity of JEM analysis and could extend the effective observation range of JEM.

A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 해석)

  • Sohn, Chae-Hoon;Kim, Young-Mog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.28-37
    • /
    • 2002
  • Acoustic behavior in combustion chamber with acoustoc cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability passively. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Through harmonic analysis, acoustic pressure responses of chamber to acoustic oscillating excitation are shown and the resonant acoustic modes are identified. Acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded significantly. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

Study on Subcritical Water Degradation of RDX Contaminated Soil in Batch and Dynamic Mode (배치형과 연속흐름형에 의한 토양 중 RDX의 아임계 분해특성 비교연구)

  • Choi, Jae-Heon;Lee, Hwan;Lee, Cheol-Hyo;Kim, Ju-Yup;Park, Jeong-Hun;Jo, Young-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to compare the degradation characteristics by subcritical water of RDX contaminated soil using batch mode and dynamic mode devices. First, upon application of RDX contaminated soil, RDX treatment efficiency was increased with increasing the temperature in both modes. At 150℃, the treatment efficiency was 99.9%. RDX degradation efficiency got higher with lower ratio of solid to liquid. However, the treatment efficiency in the dynamic mode tended to be decreased at a certain ratio of solid to liquid or lower. The treatment efficiency was increased when it took longer time for the reactions in both modes. As the results of analysis on concentration of treated water after subcritical water degradation, the RDX recovery rate of dynamic and batch modes at 150℃ was 10.5% and 1.5%, respectively. However, both modes showed very similar recovery rates at 175℃ or higher. RDX degradation products were analyzed in treated water after it was treated with subcritical water. According to the results, RDX degradation mechanism was mostly oxidation reaction and reduction reaction was partially involved. Therefore, it suggested that most of RDX in soil was degraded by oxidation of subcritical water upon extraction. According to this result, it was found that both batch and dynamic modes were very effectively applied in the treatment of explosive contaminated soil.

Development of Parallel Trickling Biofilter for the Treatment of Gas-phase Trichloroethylene

  • Lee, Eun-Yeol;Seol, Eun-Hee;Bae, Hyun-Chul;Kim, Hyun-suk;Ye, Byung-Dae;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.537-540
    • /
    • 2001
  • A parallel TBF system that is consisted of two TBFs was developed f ‘ or the long-term treatment of gas-phase trichloroethylene (TCE). Each TBF was operated for TCE degradation or reactivation in a parallel mode, and the effect of switching time and operation variables between the two reactors was investigated. Within 12 hr after switching from TCE degradation to reactivation mode, the MO activity increased up to the initial level. More than 50 % of TCE was degraded for feed concentrations ranging from 5 to 17 ppmv, and completely 100 % removed at concentration of less than 5 ppmv, while TCE removal decreased severely over 28 ppmv. In various empty bed retention times (EBRTs), ranging 상 om 5.2 to 10.7 min, the optimal EBRT was 10.7 min that TCE conversion achieved more than 50 %. For the inlet loading below 23.4 mg TCE/L/day, TCE was entirely removed. The maximal TCE elimination capacity in this system was about 66.63 mg TCE/L/day. During the continuous treatment of TCE over 3 months, TCE removal efficiency was maintained at the range of about 50 %. In these results, the parallel TBF system can be available for the continuously TCE biodegrading operation.

  • PDF

Effect of Al Amount on the Sintering Behavior and Mechanical Properties of Reaction Bonded Alumina (반응 소결 Alumina의 소결거동과 기계적 성질에 미치는 Al 첨가량의 영향)

  • 장복기;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.519-527
    • /
    • 1997
  • The effect of Al content and heating rate on the sintering behavior, microstructure, and mechanical properties of reaction bonded alumina (RBAO) was investigated. As the heating rate became slower a critical Al content which could be added to RBAO increased. The weight gain and linear shrinkage of RBAO containing of 55 vol% Al were 28% and 6.5%, respectively. The relative density of RBAO decreased from 96 to 94%, as the amount of Al increased from 15 to 55 vol%. The hardness of RBAO increased from 17.8 to 19.9 GPa and the bending strength enhanced from 370 to 570 MPa, as the amount of Al increased from 15 to 55 vol%. On the other hand, the wear rate of RBAO degraded from 6.7 to 3.39$\times$10-5 $\textrm{mm}^2$/kg and the fracture toughness decreased from 4.1 to 3.6 MPa.m1/2, as the amount of Al increased from 15 to 55 vol%. Fracture modes were shown to the mixed mode of inter/transgranular. However, transgranular fracture was dominant with increasing the content of Al.

  • PDF

A Delta-Sigma Fractional-N Frequency Synthesizer for Quad-Band Multi-Standard Mobile Broadcasting Tuners in 0.18-μm CMOS

  • Shin, Jae-Wook;Kim, Jong-Sik;Kim, Seung-Soo;Shin, Hyun-Chol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.267-273
    • /
    • 2007
  • A fractional-N frequency synthesizer supports quadruple bands and multiple standards for mobile broadcasting systems. A novel linearized coarse tuned VCO adopting a pseudo-exponential capacitor bank structure is proposed to cover the wide bandwidth of 65%. The proposed technique successfully reduces the variations of KVCO and per-code frequency step by 3.2 and 2.7 times, respectively. For the divider and prescaler circuits, TSPC (true single-phase clock) logic is extensively utilized for high speed operation, low power consumption, and small silicon area. Implemented in $0.18-{\mu}m$ CMOS, the PLL covers $154{\sim}303$ MHz (VHF-III), $462{\sim}911$ MHz (UHF), and $1441{\sim}1887$ MHz (L1, L2) with two VCO's while dissipating 23 mA from 1.8 V supply. The integrated phase noise is 0.598 and 0.812 degree for the integer-N and fractional-N modes, respectively, at 750 MHz output frequency. The in-band noise at 10 kHz offset is -96 dBc/Hz for the integer-N mode and degraded only by 3 dB for the fractional-N mode.

The Thermal Stability Analysis of Fumes and Mists During the Drying Process of a PCB (PCB 건조공정의 흄과 미스트에 대한 열안정성 분석)

  • Chu, Chang Yeop;Lee, Jung Suk;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.32-40
    • /
    • 2019
  • During the manufacturing process of a printed circuit board(PCB), fumes and mists are generated as the ink dries on the PCB surface. The generated fumes and mists are deposited in the dryer wall and the exhaust duct. Deposited fumes and mists may present a fire hazard if the dryer temperature control system fails. In this study, the thermal stability of the fumes and mists deposited in the dryer and ducts has been analyzed by experimental methods such as thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), auto ignition temperature (AIT), and multiple mode calorimetry(MMC). According to the experimental analyses, experimental samples are likely to generate gas at the temperature ($180{\sim}240^{\circ}C$) that deviates from the normal operating temperature ($150{\sim}156^{\circ}C$). It has been shown that the thermal stability is degraded when the temperature is deviated from the normal operating temperature. In the end, engineering and management safety measures of accidental prevention have been suggested.

Residual bearing capacity of steel-concrete composite beams under fatigue loading

  • Wang, Bing;Liu, Xiaoling;Zhuge, Ping
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적층보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.1-4
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue lift of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the $90^{\circ}$-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminate. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[\textrm{90}_{2}\textrm{0}_{2}]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Speed Control of Marine Diesel Engines Using Fuzzy Scheduling (퍼지게인 스케줄링을 이용한 선박용 디젤기관의 속도제어)

  • 유성호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.1-5
    • /
    • 2000
  • The conventional PID controller has been extensively used to speed control of marine diesel engines. However one of drawbacks is that its control performance can be degraded if the parameters are fixed on whole operating points. In this paper a scheme for integrating PID control and the fuzzy technique is presented to control speed of a marine diesel engine on whole operating points. At first the PID controller is designed at each speed mode whose parameters are optimally adjusted using a genetic algorithm, Then fuzzy "if-then" rules combine the controllers as a consequence part. To demonstrate the effectiveness of the proposed fuzzy controller a set of simulation works on a marine diesel engine are carried out.rried out.

  • PDF