• Title/Summary/Keyword: Degradation test

Search Result 1,832, Processing Time 0.033 seconds

Statistical Analysis of Degradation Data under a Random Coefficient Rate Model (확률계수 열화율 모형하에서 열화자료의 통계적 분석)

  • Seo, Sun-Keun;Lee, Su-Jin;Cho, You-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.19-30
    • /
    • 2006
  • For highly reliable products, it is difficult to assess the lifetime of the products with traditional life tests. Accordingly, a recent approach is to observe the performance degradation of product during the test rather than regular failure time. This study compares performances of three methods(i.e. the approximation, analytical and numerical methods) to estimate the parameters and quantiles of the lifetime when the time-to-failure distribution follows Weibull and lognormal distributions under a random coefficient degradation rate model. Numerical experiments are also conducted to investigate the effects of model error such as measurements in a random coefficient model.

Fault Prediction & Reliability Estimation of the Traction Motor by the Complex Accelerating Degradation and Condition Diagnosis (견인전동기의 복합가속열화 상태진단에 의한 고장예측 및 신뢰성 평가)

  • 왕종배;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.763-766
    • /
    • 2000
  • In this paper, stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the 200 Class insulation system of traction motors. The complex accelerative degradation was performed by periods during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of 20∼160$^{\circ}C$. Relationship among condition diagnosis test was analyzed to find an dominative degradation factor and an insulation state at end-life point.

  • PDF

The Evaluation of Creep Degradation for the High Temperature Pipe Material by Small Punch Test (소형펀치법에 의한 고온배관재료의 크리프열화 평가)

  • Yoo, K.B.;Jang, S.H.;Song, G.W.;Ha, J.S.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.37-42
    • /
    • 2000
  • The boiler tubes and steam Pipes operating both at high temperature and pressure for a long period of time in a power plant are degraded by creep because of internal pressure. So, the remaining life of a component is evaluated by the creep rupture strength. Although the conventional method to evaluate the creep damage is widely used, it has some disadvantages such as requires large size specimen and long employed to evaluate the correlation between fracture toughness and evaluation time. Recently, new method so called "small lunch test' is used to evaluate degradation of creep. In this study, a conventional creep test and a small punch test are conducted using 2.25Cr-1Mo steel which is mainly used for the boiler tubes and steam pipes in power plant. The creep life, approximately 1,500 hrs, is determined by conventional method under a severe condition then specimens for a small Punch test are obtained after certain time intervals such as 1/4, 1/2 and 3/4 of final rupture time, respectively.

  • PDF

A Study on The Degradation Characteristics of MLCCs SAC305 Lead-Free Solder Joints and Growth IMCs by Thermal Shock Test (열충격 시험을 통한 MLCCs SAC305 무연 솔더 접합부의 IMCs 성장과 접합특성 저하에 관한 연구)

  • Jung, Sang-Won;Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.152-158
    • /
    • 2016
  • The bonding characteristics of MLCCs (multi layer ceramic capacitor, C1608) lead-free solder (SAC305) joints were evaluated through thermal shock test ($-40^{\circ}C{\sim}125^{\circ}C$, total 1,800 cycle). After the test, IMCs( intermetallic compounds) growth and cracks were verified, also shear strengths were measured for degradation of solder joints. In addition, The thermal stress distributions at solder joints were analyzed to compare the solder joints changes before and after according to thermal shock test by FEA (finite elements analysis). We considered the effects of IMCs growth at solder joints. As results, the bonding characteristics degradation was occurred according to initial crack, crack propagations and thermal stress concentration at solder-IMCs interface, when the IMCs grown to solder inside.

TIGHTENED CRITICAL VALUE DEGRADATION TEST

  • Jang, J.S.;Jang, S.J.;Park, B.H.;Lim, H.K.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.193-200
    • /
    • 2004
  • Determination of sample sizes and the inspection intervals for degradation tests is considered. The cases of degradation rate model and degradation path model are analyzed with some examples. Tightened critical value tests are also considered that are shown to be advantageous over non-tightened ones.

  • PDF

The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine (엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.

Material Degradation in KS D 3503 SS400 Rolled Steel at $179^{\circ}C$ (KS D 3503 SS400 압연강 $179^{\circ}C$에서의 재질열화 연구)

  • Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.13-18
    • /
    • 2006
  • In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been actively studied. In this research, SS400 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SS400 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and $179^{\circ}C$ and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.

Service life prediction of CFRP bar for concrete reinforcement based on accelerated degradation tests (가속열화시험에 의한 콘크리트용 탄소섬유 강화플라스틱 바의 사용수명 예측)

  • Kwon, Young-Il;Kim, Seung-Jin;Lee, Hyoung-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.2
    • /
    • pp.71-80
    • /
    • 2009
  • This paper discusses the service life prediction methods for CFRP bar for concrete reinforcement using accelerated degradation tests. The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed for the temperature accelerated degradation tests. Methods of obtaining acceleration factors and predicting service life of the CFRP bar using the degradation model are presented.

  • PDF

Evaluation of Material Degradation Using Electrical Resistivity Method (전기비저항법을 이용한 재료열화 평가)

  • Kim, Jeong-Pyo;Bae, Bong-Kook;Kim, Dong-Joong;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.129-136
    • /
    • 2001
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And the DC potential drop method and destructive methods such as tensile, $K_{IC}$ and hardness tests were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimate the material degradation, and to analyse the relationship between the electrical resistivity and the degree of material degradation.

  • PDF

Assessment of Degradation by Corrosion Fatigue of TMCP Steel using a Backward Radiated Ultrasound (후방복사 초음파를 이용한 TMCP강의 부식피로 손상평가)

  • Kim, Y.H.;Bae, D.H.;Park, J.H.;Yu, H.J.;Kwon, S.D.;Song, S.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.349-355
    • /
    • 2003
  • Material degradation due to corrosion fatigue was evaluated nondestructively using backward radiated Rayleigh surface wave. h corrosion fatigue test was carried out for the specimens made of thermo-mechanically controlled process steel in 3.5wt.% NaCl solution at $25^{\circ}C$. The backward radiation profile, which is the amplitude variation of backward radiated ultrasound according to the incident angle, of the specimens were measured in water at room temperature after the corrosion fatigue test. The velocity of Rayleigh surface wave, determined from the incident angle at which the profile of the backward radiated ultrasound became maximum, decreased for the specimen that had the large number of cycles to failure in the corrosion fatigue test. This fact implies that the corrosion degradation occurred at specimen surface in this specific test is dominantly dependant on the me exposed to corrosion environment. The result observed in the present work demonstrates the high potential of backward radiated Rayleigh surface wave as a tool for nondestructive evaluation of corrosion degradation of aged materials.