• Title/Summary/Keyword: Degradation of methylene blue

Search Result 144, Processing Time 0.029 seconds

Effect of calcination temperature on photocatalytic activities of Er-TiO2 nanotubes

  • Song, Yo-Seung;Lee, Myung-Hyun;Kim, Bae-Yeon;Lee, Deuk Yong
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.2
    • /
    • pp.182-186
    • /
    • 2019
  • 0.7 mol% Er-TiO2 nanotubes were prepared using a sol-gel derived electrospinning and subsequent calcination at intervals of 50 ℃ from 500 ℃ to 650 ℃ to investigate the effect of calcination temperature on the crystal structure and the photocatalytic activity of methylene blue (MB). X-ray diffraction (XRD) results indicated that Er-TiO2 nanotubes calcined at 500 ℃ were composed of anatase only. However, mixed phases of anatase (51%, 55%, 96%) and rutile (49%, 45%, 4%) were observed for the nanotubes calcined at 550 ℃, 600 ℃ and 650 ℃, respectively. As the calcination temperature rose from 500 ℃ to 600 ℃, the Barrette-Emmett-Teller (BET) surface area and degradation kinetic constant increased from 97.77 ㎡/g to 117.62 ㎡/g and from 1.2 × 10-2min-1 to 1.6 × 10-2 min-1, respectively. The Er-TiO2 nanotubes calcined at 600 ℃ exhibited enhanced MB degradation (87%) compared to that of Er-TiO2 nanofibers (37%) due to the synergic combinations of tailored mixed crystals and larger BET area.

Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation

  • Li, Xuan;Zhang, Zhuo;Zhang, Feng-Jun;Liu, Jin;Ye, Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.665-669
    • /
    • 2016
  • $TiO_2/BiVO_4$ layered films were prepared by sol-gel and spin coating methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Uv-vis spectroscopy were used to investigate the crystal structure, morphology and ultraviolet-visible absorption of the $TiO_2/BiVO_4$ films. The photocatalytic activity of the prepared films was inspected according to the degradation of methylene blue. The results show that the prepared films present a net chain structure; the absorption band edge had obvious red shift. The degradation of the methylene blue solution was about 80% after 300 mins using $TiO_2/BiVO_4$ layered films under visible light, which was stronger than when using only pure $TiO_2$ film and $BiVO_4$ film.

Effects of transition metal-doping on the properties of ZnO nanoparticles and the photocatalytic degradation of methylene blue (전이금속 도핑이 ZnO 나노분말의 특성 및 메틸렌블루 광촉매 분해 특성에 미치는 영향)

  • Chang, Han Kwon;Oh, Kyung Jun;Jang, Hee Dong;Cho, Kuk;Kim, Dong-Jin;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Transition metals such as V, Fe, and Ni were used to synthesize doped zinc oxide nanoparticles from mixed liquid precursors by using the flame spray pyrolysis (FSP). The effects of dopants on the powder properties such as morphology, specific surface area, crystal structure, and light adsorption were analyzed by TEM, BET, XRD, and UV-Vis diffuse reflection spectrum (DRS), respectively. The results showed that hexagonal wurtzite structured ZnO:M (M = V, Fe, Ni) nanoparticles were successfully synthesized by the FSP. The transition metal-doping resulted in the decrease in its particle size and crystallite size. The UV-vis absorption spectra of ZnO:M nanoparticles were also red-shifted. ZnO:V showed the highest MB degradation of 99.4% under the UV irradiation after 3 hrs.

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon;Choi, Jong-Geun;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.

Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.651-657
    • /
    • 2008
  • In this study, CNT/$TiO_2$ composites were prepared using surface modified Multiwall carbon nanotube (MWCNT) and titanium n-butoxide (TNB) with benzene. The composites were characterized by nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), FT-IR spectra, and UV-vis absorption spectroscopy. The UV radiation induced photoactivity of the CNT/$TiO_2$ composites was tested using a fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution. Finally, it can be considered that the MB removal effect of the CNT/$TiO_2$ composites is not only due to the adsorption effect of MWCNT and photocatalytic degradation of $TiO_2$, but also to electron transfer between MWCNT and $TiO_2$.

Self-Cleaning and Photocatalytic Performance of TiO2 Coating Films Prepared by Peroxo Titanic Acid

  • Yadav, Hemraj M.;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.577-582
    • /
    • 2017
  • Self-cleaning and photocatalytic $TiO_2$ thin films were prepared by a facile sol-gel method followed by spin coating using peroxo titanic acid as a precursor. The as-prepared thin films were heated at low temperature($110^{\circ}C$) and high temperature ($400^{\circ}C$). Thin films were characterized by X-ray diffraction(XRD), Field-emission scanning electron microscopy(FESEM), UV-Visible spectroscopy and water contact angle measurement. XRD analysis confirms the low crystallinity of thin films prepared at low temperature, while crystalline anatase phase was found the for high temperature thin film. The photocatalytic activity of thin films was studied by the photocatalytic degradation of methylene blue dye solution. Self-cleaning and photocatalytic performance of both low and high temperature thin films were compared.

A comparative study on the degradation of methyl orange, methylene blue and congo red by atmospheric pressure jet

  • Park, Ji Hoon;Yusupov, Maksudbek;Lingamdinne, Lakshmi Prasanna;Koduru, Janardhan Reddy;Bogaerts, Annemie;Choi, Eun Ha;Attri, Pankaj
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • One of the most serious problems faced by billions of people today is the availability of fresh water. According to statistics, 15% of the world's total output of dye products is discharged into the environment as dye wastewater, which seriously pollutes groundwater resources. For the treatment of chemically and biologically contaminated water the advanced oxidation processes (AOPs) shows the promising action. The main advantage with AOPs is the ability to degrade the organic pollutants to $CO_2$ and $H_2O$. For this degradation process the AOPs generation of powerful and non-selective radicals that may oxidize majority of the organic pollutants present in the water body. To generate the various reactive chemical species such as radicals (${\bullet}OH$, ${\bullet}H$, ${\bullet}O$, ${\bullet}HO_2$) and molecular species ($H_2O_2$, $H_2$, $O_2$) in large amount in water, we have used the atmospheric pressure plasma. Among the reactive and non-reactive species, the hydroxyl radical (${\bullet}OH$) plays important role due to its higher oxidation potential (E0: 2.8 V). Therefore, in this work we have checked the degradation of various dyes such as methyl orange, methylene blue and congo red using different type of atmospheric pressure plasma sources (Indirect jet and direct jet). To check the degradation we have used the UV-visible spectroscopy, HPLC and LC-MS spectroscopy. Further, to estimate role of ${\bullet}OH$ on the degradation of dyes we have studied the molecular dynamic simulation.

  • PDF

Preparation of Nb2O5-Graphene Nanocomposites and Their Application in Photocatalytic Degradation of Organic Dyes (Nb2O5-Graphene나노복합체의 제조 및 유기염료 광촉매 분해반응의 응용성에 관한 연구)

  • Park, Hae Soo;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.330-335
    • /
    • 2014
  • Niobium pentoxide ($Nb_2O_5$) nanoparticles were synthesized using niobium (V) chloride and pluronic F108NF as the precursor and templating agent, respectively. The $Nb_2O_5$-graphene nanocomposites were placed in an electric furnace at $700^{\circ}C$ and calcined under Ar atmosphere for 2 h. The morphology, crystallinity, and photocatalytic degradation activity of the samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and UV-vis spectroscopy. The $Nb_2O_5$-graphene nanocomposites acted as a photocatalyst in the photocatalytic degradation of organic dyes under 254 nm UV light; the organic dyes used were methylene blue (MB), methyl orange (MO), rhodamine B (RhB), and brilliant green (BG). The photocatalytic degradation kinetics for the aforesaid dyes were determined in the presence of the $Nb_2O_5$-graphene nanocomposites.

Photocatalytic Activity of EG-TiO2 Composite for Various Dye Solutions Under UV Light and Visible Light

  • Go, Yu-Gyoung;Kwon, Ho-Joung;Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.555-561
    • /
    • 2009
  • Expanded graphite (EG) is synthesized by chemical intercalation of natural graphite (NG) and rapid expansion at high temperature, with titanium n-butoxide (TNB) used as titanium source by a sol-gel method to prepare EG-TiO$_2$ composite. The performances of the prepared EG-TiO$_2$ composite are characterized by BET surface area measurement, scanning electron microscopy (SEM), X-ray diffraction patterns (XRD) and energy dispersive X-ray analysis (EDX). To compare the photocatalytic activities of the EG-TiO$_2$ composite, three kinds of dye solutions, methylene blue (MB), methylene orange (MO) and rhodamine B (RhB), and two kinds of light source, UV light and visible light (VL), are used. Comparing the results, it can be clearly seen that the degradation of all of the dye solutions under irradiation by UV light is much better than that under irradiation by visible light, and the decomposition of MB solution was better than that of both of MO and RhB solution.

Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes (그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구)

  • Jeong, Gyoung Hwa;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.607-611
    • /
    • 2020
  • In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.