• Title/Summary/Keyword: Degradation Classification

Search Result 141, Processing Time 0.025 seconds

Material Degradation of Ancient Iron Pot by Repeated Heating for One Thousand Years (고대 철확(철솥)의 1천년 반복 가열 및 열화현상)

  • Go, Hyeong;Han, Min Su;Choe, Byung Hak;Min, Doo Sik;Shim, Yun Im;Jeong, Hyo Tae;Cho, Nam Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.324-330
    • /
    • 2012
  • The microstructural changes of three pieces from an ancient iron pot were studied in order to identify present the material degradation due to repeated heating for one-thousand years. The microstructures of the pieces were divided into the areas of ferrite/graphite, ferrite/pearlite, and corroded oxidation. The area of ferrite/graphite was undergone by severe Galvanic corrosion, but that of ferrite/pearlite was not even during a thousand years' using. The shape of the graphites was coexisted with types of A, B, and C of as modern graphite classification. In the ferrite/pearlite area, abnormal acicula precipitates with a high aspect ratio of $0.2{\mu}m$ thickness and several hundreds ${\mu}m$ length were presented. They might be a kind of carbide in the ferrite matrix with its special precipitate plane.

A Study on the Health Index Based on Degradation Patterns in Time Series Data Using ProphetNet Model (ProphetNet 모델을 활용한 시계열 데이터의 열화 패턴 기반 Health Index 연구)

  • Sun-Ju Won;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.123-138
    • /
    • 2023
  • The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.

Effect of light illumination and camera moving speed on soil image quality (조명 및 카메라 이동속도가 토양 영상에 미치는 영향)

  • Chung, Sun-Ok;Cho, Ki-Hyun;Jung, Ki-Yuol
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.407-412
    • /
    • 2012
  • Soil texture has an important influence on agriculture such as crop selection, movement of nutrient and water, soil electrical conductivity, and crop growth. Conventionally, soil texture has been determined in the laboratory using pipette and hydrometer methods requiring significant amount of time, labor, and cost. Recently, in-situ soil texture classification systems using optical diffuse reflectometry or mechanical resistance have been reported, especially for precision agriculture that needs more data than conventional agriculture. This paper is a part of overall research to develop an in-situ soil texture classification system using image processing. Issues investigated in this study were effects of sensor travel speed and light source and intensity on image quality. When travel speed of image sensor increased from 0 to 10 mm/s, travel distance and number of pixel were increased to 3.30 mm and 9.4, respectively. This travel distances were not negligible even at a speed of 2 mm/s (i.e., 0.66 mm and 1.4), and image degradation was significant. Tests for effects of illumination intensity showed that 7 to 11 Lux seemed a good condition minimizing shade and reflection. When soil water content increased, illumination intensity should be greater to compensate decrease in brightness. Results of the paper would be useful for construction, test, and application of the sensor.

Classification of Degraded Peat Swamp Forest for Restoration Planning at Landscape Level Using Remote Sensing Technique

  • Hamzah, Khali Aziz;Idris, Azahan Shah;Parlan, Ismail
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Malaysia possesses about 1.56 million ha of Peat Swamp Forest (PSF). The PSF safeguard enormous biological diversity, while providing crucial benefits for the sustainable development of human communities. Numbers of threatened plant species are associated with the PSF, including the commercially important Gonystylus bancanus timber. To prevent significant losses of biodiversity, it is important to manage the PSF for both biological conservation and sustainable use. Equally important is to restore all degraded PSF in an attempt to ensure the PSF ecosystem is suitable for the vegetation to grow and rehabilitate back to the normal condition. Prior to plan any forest restoration program, there is a need to properly map the degraded PSF in order to estimate the forest conditions and determine the vegetations status. Most of the time this need to be done at a landscape level and requires a technology that can provide accurate, timely and reliable information for the planner to make decision. This paper describes a study using geospatial technology in combination with ground survey to classify the degraded PSF in South East Pahang Peat Swamp Forest (SEPPSF), Malaysia, into different degree of vegetation classes. With map accuracy of about 83%, the technique proved to be useful in delineating the different degree of PSF degradation from which the information can be used to properly plan forest restoration program in the area. The final output which is in the form of map can be used in developing a Restoration Master Plan for the degraded PSF areas.

Valuing the Water Quality Changes in Paldang Watershed: Using New Water Quality Classification Criteria and Indices (새로운 분류체계를 이용한 수질변화의 경제적 가치 추정)

  • Kim, Yong-Joo;Yoo, Young Seong
    • Environmental and Resource Economics Review
    • /
    • v.17 no.4
    • /
    • pp.875-901
    • /
    • 2008
  • This article estimates the economic values of changes in water quality of the Paldang Watershed by using the Choice Experiment (CE). The conditional logit model estimation results show that a small improvement in water quality from the 'status quo' level to the level of 'very good' increases average household's monthly utility by 3,157 Won, whereas a water quality degradation down to the 'normal' level gives rise to an increase in the monthly average utility by 9,649 Won. The corresponding social gain and loss of water quality changes to the Metropolitan Area were thus estimated about 285 billion Won and 872 billion Won, respectively. This article seems meaningful in that it resorts to the new water ecosystem classification criteria and indices that are respondent-friendly. They help a CE study like this to overcome one of its critical weakness that the number and contents of attributes of a CE study can quickly add to the information overload problem, especially where the environmental good under investigation is hard for ordinary respondents to understand.

  • PDF

Enzymatic Characterization and Classifications of Chitosanases (키토산분해효소의 분류와 효소적 특성)

  • Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Park, Zee-Yong;Park, Ro-Dong
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • Many chitosanases, glycosyl hydrolases that catalyze the degradation of chitosan, have been found in microorganism. In this paper, classification of the enzyme has been described, which is based on the amino acid sequence (families) and splitting patterns (subclasses). Glycohydrolytic mechanisms such as inversion and retention of the substrate anomer are also discussed in context of the families. Interrelationship among the primary structure, clan, anomeric conversion and the splitting patterns has been suggested. In addition, advanced definition of chitosanase was introduced through the investigation of enzymatic products from partially N-acetylated chitosan as a substrate.

Implementation of the Speech Emotion Recognition System in the ARM Platform (ARM 플랫폼 기반의 음성 감성인식 시스템 구현)

  • Oh, Sang-Heon;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1530-1537
    • /
    • 2007
  • In this paper, we implemented a speech emotion recognition system that can distinguish human emotional states from recorded speech captured by a single microphone and classify them into four categories: neutrality, happiness, sadness and anger. In general, a speech recorded with a microphone contains background noises due to the speaker environment and the microphone characteristic, which can result in serious system performance degradation. In order to minimize the effect of these noises and to improve the system performance, a MA(Moving Average) filter with a relatively simple structure and low computational complexity was adopted. Then a SFS(Sequential Forward Selection) feature optimization method was implemented to further improve and stabilize the system performance. For speech emotion classification, a SVM pattern classifier is used. The experimental results indicate the emotional classification performance around 65% in the computer simulation and 62% on the ARM platform.

  • PDF

Design of a Real-time Algorithm Using Block-DCT for the Recognition of Speed Limit Signs (Block-DCT를 이용한 속도 제한 표지판 실시간 인식 알고리듬의 설계)

  • Han, Seung-Wha;Cho, Han-Min;Kim, Kwang-Soo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1574-1585
    • /
    • 2011
  • This paper proposes a real-time algorithm for speed limit sign recognition for advanced safety vehicle system. The proposed algorithm uses Block-DCT in extracting features from a given ROI(Region Of Interest) instead of using entire pixel values as in previous works. The proposed algorithm chooses parts of the DCT coefficients according to the proposed discriminant factor, uses correlation coefficients and variances among ROIs from training samples to reduce amount of arithmetic operations without performance degradation in classification process. The algorithm recognizes the speed limit signs using the information obtained during training process by calculating LDA and Mahalanobis Distance. To increase the hit rate of recognition, it uses accumulated classification results computed for a sequence of frames. Experimental results show that the hit rate of recognition for sequential frames reaches up to 100 %. When compared with previous works, numbers of multiply and add operations are reduced by 69.3 % and 67.9 %, respectively. Start after striking space key 2 times.

Implementation Strategy Based on the Classification of Depreciation Models (감가상각모형의 유형화에 기초한 적용방안)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.217-230
    • /
    • 2014
  • The purpose of this study is to develop the Generalized Depreciation Function (GDF) and Winfrey Depreciation Function (WDF) by reviewing methods for the depreciation accountings. The Depreciation Accounting Models (DAM), including straight-line model, declining-balance model, sum-of-the-year-digit model and sinking fund model presented in this paper, are reclassified into the charging pattern of increasing type, decreasing type and constant type. This paper also discusses the development of the GDFs based on convex type, concave type and constant type according to the demand pattern of product, frequency of plant usage, deterioration of time, relative inadequacy, Capital Expenditure (CAPEX) and Operating Expenditure (OPEX) of the Total Productive Maintenance (TPM). The WDFs presented in this paper depict a sudden degradation of plant performance by measuring the change of TPM activity at the midpoint of useful life of asset. The WDFs are classified into left-modal type, symmetrical type and right-modal type by varying the value of skewness and kurtosis. Moreover, three increasing patterns, such as convex, concave and linear types, are used in this paper to present the distinct identification of WFDs by using Instantaneous Depreciation Rate (IDR) in terms of Performance Depreciation Function (PDF) and Depreciation Density Function (DDF). In order to have better understanding of depreciation models, the numerical examples are used for evaluating the Net Operating Less Adjusted Tax (NOPLAT) and Economic Value Added (EVA). It is concluded that the depreciation models showing a large dispersion of EVA require the adjustment of NOPLAT and Invested Capital (IC) based on the objective cash basis and net operating activity for reducing the variation of EVA.

Two-Stage Neural Networks for Sign Language Pattern Recognition (수화 패턴 인식을 위한 2단계 신경망 모델)

  • Kim, Ho-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we present a sign language recognition model which does not use any wearable devices for object tracking. The system design issues and implementation issues such as data representation, feature extraction and pattern classification methods are discussed. The proposed data representation method for sign language patterns is robust for spatio-temporal variances of feature points. We present a feature extraction technique which can improve the computation speed by reducing the amount of feature data. A neural network model which is capable of incremental learning is described and the behaviors and learning algorithm of the model are introduced. We have defined a measure which reflects the relevance between the feature values and the pattern classes. The measure makes it possible to select more effective features without any degradation of performance. Through the experiments using six types of sign language patterns, the proposed model is evaluated empirically.