• Title/Summary/Keyword: Defrosting performance

Search Result 34, Processing Time 0.025 seconds

A Study on the Performance Test and Verification of Heat Transfer characteristics in Automobile Rear Window Heater (자동차 후면 유리 열선의 열전달특성에 따른 성애제거 성능평가 및 성능검증 방법에 관한 연구)

  • Juen, H.Y.;Lee, C.K.;Bae, H.J.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • Both theoretical and experimental investigations were conducted to analyze defrosting behavior of a window heater operating in the low outdoor temperature($-20^{\circ}C$). To achieve this purpose, first a warm-chamber experiment($23^{\circ}C$) was performed to measure inner and outer surface temperature of the rear window(heated by the electric heater supplying 195 W) as functions of both time and position. Secondly, a cold chamber experiment was made to continuously record defrosting process of the frosted window. From the comparisons of the two experimental results, it was found that there was a similarity between the spatial distributions of both temperature and remaining frost. Thus, the temperature data from the warm-chamber experiments can be utilized to predict an expected zone covered with remaining frosts, and this approach can also be adopted in the inspection process in order to economically guarantee optimized performance of the window heater. Finally, an analytical model based on one-dimensional, steady-state heat transfer theories was proposed and successfully predicted the outer surface temperature of the rear window surrounded by cold air($-20^{\circ}C$) for the given operating conditions(heater power, inside and outside heat transfer coefficients, and surrounding air temperature, etc.).

  • PDF

Performance Improvement Technology on a Continuous Heating Heat Pump at Frost Condition (착상조건에서 연속난방이 가능한 히트펌프 성능 향상 기술)

  • Jeon, Chang-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.573-577
    • /
    • 2013
  • Heat pumps come into wide use because high energy efficiency can be obtained and diverse heat sources like geothermal heat, waste heat and air are available. It is necessary for an air source heat pump to defrost in order to remove frost on the surfaces of an outdoor heat exchanger. It is impossible for continuous heating if reverse cycle operation is used as defrosting method, furthermore it causes the degradation of COP. In this study an fin-tube heat exchanger with three rows was used as an outdoor coil. One row among three rows of the heat exchanger was used like a condenser in order to remove frost on it, the others were used as evaporator to accomplish continuous heating. Each row was switched in order from a condenser to an evaporator in specified time interval. Tests were carried out during minimum 180 minutes at the defrost-heating test condition(dry bulb temperature $2^{\circ}C$, wet bulb temperature $1^{\circ}C$) described in KS C 9306. Time-averaged COP was about 20% higher than that of conventional defrosting method.

Feasibility Study on a Defrost Control Method by Using a Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 타당성 검토)

  • Jeon, Chang-Duk;Kim, Dong-Seon;Lee, Seung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3389-3395
    • /
    • 2014
  • Conventional methods, such as the clock time control method and temperature difference control method, for defrost control often encounter mal-defrost and a waste of energy. Therefore, a more efficient method is needed to control defrosting precisely. A photoelectric sensor unit consisting of an emitter and a collector was installed in the front of outdoor heat exchanger. Accurate defrost control was performed by monitoring and using the change in output voltage according to the presence of frost. In this study, experiments were performed to determine if the performance and characteristic curves obtained using the clock time control method can be reproduced using a photoelectric sensor under the heating and defrosting capacity test condition described at KS C 9306. The output voltage of the phototransistor (receiver) and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger, were compared. The results showed that photoelectric sensors can be used as a defrost control method. On-off control timing of the clock time defrosting method was in good agreement with those predicted by the output voltage of the photoelectric sensor.

Measurement and Analysis of Showcase Field Data (쇼케이스의 현장 데이터 측정 및 분석)

  • Shin You-Hwan;Oh Wang-Kyu;Park Ki-Ho;Kim Youngil;Shin Younggy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.436-443
    • /
    • 2005
  • Experimental study was performed to understand the operation of an on-site showcase working in a super discount store. Inlet and outlet temperatures of evaporator, condenser, expansion valve and compressor were measured for both air and refrigerant sides. Electric power consumption of compressors, defrosting heaters, cooling water pumps and etc. were measured. The operating characteristics of the showcase system under various working conditions were analyzed and discussed. During the defrosting process, the air temperature inside the showcase increased to $15^{\circ}C$, which gave harmful effect to the frozen food. The collected data will serve as valuable information for diagnosing and improving the performance of showcases.

The Effect of Environmental Parameters on Frost Formation on a Horizontal Cylinder (수평 실린더에서의 서리 생성에 대한 환경 변수들의 영향)

  • Lee, Yun-Bin;Ryu, In-Sang;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • It is known that frost formation on surfaces of the heat exchanger seriously affects the performance of the refrigeration system. Accordingly, defrosting should follow, and effective defrosting is possible only when both analytic tools and comprehensive experimental data on frost formation are assailable. An experimental investigation was undertaken to characterize the effect of environmental parameters on frost formation on a horizontal cylinder in cross uniform flow. Several experiments were carried out with various environmental parameters such as inlet air temperature, inlet air humidity, air velocity and cooling surface temperature. Frost thickness, mass, surface temperature and cylinder inner and outer temperature were measured at front and rear positions of the cylinder. Thickness, mass, density, and effective thermal conductivity of the frost layer were obtained from measured data and effects of environmental parameters on the frost formation were analyzed. Data from experiments were correlated using dimensionless variables.

Performance Analysis of Heating Nonslip using Solar Power Energy (태양광 에너지를 이용한 발열논슬립의 성능분석)

  • Moon, Jong Wook;Choe, Jae Won;Yun, Seok Heon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2018
  • This study aims to analyze the performance of Heated-nonslip using renewable energy to prevent nonslip freezing during winter. For this purpose, power generation system and congratulatory devices using solar energy are designed, and it is designed to provide regular electricity to heat up nonslip through Electrical storage system(ESS). In this study, It is intended to analyze the level of electrical energy suitable for nonslip using 24V or 48V, and to measure the temperature changes and temperature distribution according to the location of the test object. As a result of the experiment, nonslip's frame temperature was measured at $-7.5{\sim}-5^{\circ}C$ on average, and $-1{\sim}-2^{\circ}C$ on the heating cable during the supply of 24V and this could not be the solution for defrosting freezing nonslip in the winter. As a result of heating nonslip by supplying 48V with an electrical power of 8W, the temperature of the nonslip was shown to be between $5^{\circ}C$ and $11^{\circ}C$ to $13^{\circ}C$. Even if the power supply was switched on and off every minute, the temperature did not drop below $4^{\circ}C$ and the frozen ice melted on the nonslip without freezing.

Cooling Characteristics of Refrigerated Vehicles with Heat Storage Materials in Thermobank (냉동탑차의 Thermobank 열저장 매체에 따른 냉각성능 비교)

  • Mun, Je-Cheol;Choi, Kwang-Il;Oh, Jong-Taek;Kim, Jai-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.810-814
    • /
    • 2009
  • A experimental study of a high efficiency transport refrigeration system for sliced-raw fish transportation is presented in this paper. The refrigeration system, that is powered by the car engine, is equipped with heat storage for reverse cycle-hot gas defrost; the stored heat is used during defrost cycle of the system. The heat storage has size $400(L){\times}350(W){\times}250(H)\;mm$ and made of fin-tube heat exchanger. System performance and container operating conditions are experimentally investigated and analyzed under cooling and defrosting conditions with heat storage materials. The water is faster about 30% than paraffin in cooling-down time of heat storage materials with load and unload.

  • PDF

Actual operation characteristics to evaluate the performance of heat pump outdoor unit in the constant temperature chamber (항온챔버에서 히트펌프 실외기의 성능을 평가하는 실제 운전)

  • Jong-Ryeol Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.123-128
    • /
    • 2022
  • A lot of research is being done to develop a high-efficiency heat pump to save energy, and research to reduce or eliminate the phenomenon of frost occurring in the outdoor unit coil is also being conducted at the same time. In order to conduct a study that does not cause frost on the outdoor unit of the heat pump regardless of the season, a constant temperature chamber like a general room that can be tested under the same conditions as in the natural state was built. The experiment was conducted by providing an environment similar to the natural state to the outdoor unit of the heat pump installed in the constant temperature chamber. As a result, the lower the outdoor temperature, the lower the efficiency of the heat pump. It wat confirmed that the lower the value, the longer it is.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 - (공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

Modification of Conventional Freeze Dryer (진공동결 건조기의 개발에 관한 연구)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Kang, Tong-Sam;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.350-356
    • /
    • 1988
  • A pilot plant scale freeze dryer was designed and manufactured and its performance was tested. Freezing capacity of water vapor in the developed freeze dryer was 8㎏/batch and heating and defrosting methods were conduction and hot gas types, respectively. And exhausting time of vacuum pump was 7-8 minutes and temperature of cold trap was kept below $-50^{\circ}C$. In the freeze drying of fruits and vegetables, its optimum and maximum drying capacities were 2 and 4㎏/batch, respectively. Performance of the new freeze dryer was compared quite well with a foreign made freeze dryer.

  • PDF