• Title/Summary/Keyword: Defrost performance

Search Result 32, Processing Time 0.028 seconds

Performance Evaluation of the Hybrid Defrost Process in the Fin-Tube Evaporators of Refrigerators (하이브리드 제상 방식을 적용한 냉장고용 핀-관 열교환기의 제상 성능 평가)

  • Lee, Su-Won;Park, Yong-Joo;Kweon, Lae-Un;Jeong, Young-Man;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • The hybrid defrost process combined with hot-gas bypass defrost and electric heater defrost was experimentally evaluated about its defrost performance in the fin-tube evaporators of household refrigerators. Also the hybrid defrost process was compared with only electric heater defrost process. The defrost efficiency of the hybrid defrost process was shown two times higher than electric heater defrost process. The defrost time of the hybrid defrost process was shorten about 10%~50% than electric heater defrost process. Thermal shock after defrost process was decreased about 50% for the case of the hybrid defrost. It was found that energy consumption ratio of defrost process was reduced up to 7.4% compared with 22.4% of electric heater defrost at the condition of $25^{\circ}C$ ambient temperature.

Modelling of a High Efficiency Refrigeration System with Heat Storage for Reverse Cycle Hot Gas Defrost

  • Ardiyansyah, Ardiyansyah;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2007
  • A computer model of a high efficiency refrigeration system equipped with heat storage for reverse cycle-hot gas defrost (the stored heat is used during defrost cycle of the system) is presented. The model was developed based on both theoretical and empirical equations for the compressor, evaporator, condenser and the heat storage equipment. Simulations of the prototype system were carried out to investigate refrigeration system performance under various operating conditions during refrigeration cycles. The simulations of the evaporator during defrost cycles at 30 and $40^{\circ}C$ hot gas refrigerant temperature were also performed which resulted on shorter defrost time but only slight increase in defrost efficiency. These information on energy efficiency and the defrost time required are important in order to avoid excessive parasitic load and temperature rise of the refrigerated room.

Numerical Analysis for Improvement of Windshield Defrost Performance of Electric Vehicle (전기자동차 전면유리 제상성능 개선을 위한 전산수치 해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Kim, Myung-Il;Lee, Jae Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.477-484
    • /
    • 2019
  • As the residence time in the vehicle increases, the passenger desires a pleasant and stable riding environment in addition to the high driving performance of the vehicle. The windshield defrosting performance is one of the performance requirements that is essential for driver's safe driving. In order to improve the defrosting performance of the windshield of a vehicle, relevant elements such as the shape of the defrost nozzle should be appropriately designed. In this paper, CFD based numerical analysis is conducted to improve defrost performance of small electric vehicles. The defrost performance analysis was performed by changing the angle of the defrost nozzle and the guide vane that spray hot air to the windshield of the vehicle. Numerical simulation results show that the defrosting performance is best when the defrost nozzle angle is $70^{\circ}$ and the guide vane installation angle is $60^{\circ}$. Based on the analytical results, the defrosting experiment was performed by fabricating the defrost nozzle and the guide vane. As a result of the experiment, it is confirmed that the frost of windshield is removed by 80% within 20 minutes, and it is judged that the defrost performance satisfying the FVMSS 103 specification is secured.

The Experimental Study on Performance Improvement under frost conditions of the Heat Pump with Corrugate Shaped Fin and Two Compressors (저 착상 휜과 두 대 압축기 사이클을 이용한 히트펌프 난방성능 개선에 관한 연구)

  • Hwang Yoon-Jei;Cho Eun-Jun;Chung Baik-Young;Lee Gam-gue
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • This study presents the experimental study on improvement of frost/defrost performance in an heat pump system with newly developed fin and multiple compressors. As multiple compressors system, the variable and single speed compressor combinations has been introduced and compared with single speed 1-compressor system in a view point of improvement of frost/defrost performance. Also, newly developed corrugate shaped fin has been compared with conventional louver shaped fin. The frost/defrost performance is defined and some parameters are compared to discuss the effect of each combination. From this experimental study, it is known that if the variable and single speed compressor combination system equipped with corrugate shaped fin, the system performance has greatly improved not only for heating capacity, but also for frost performance.

A Study of the Defrosting Control in the Application of Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 연구)

  • Jeon, ChangDuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • This study attempted to investigate the value of photoelectric sensors in terms of a defrost-control method. Tests were conducted in a calorimeter room under the heating with the defrost-performance test conditions described in KS C 9306. Accordingly, the photoelectric technology is a competitive defrost-control method that can precisely control the operational defrost cycle using the output voltages that are proportional to the frost height. The heating period is gradually reduced because the complex defrost-control method, for which the sensors initiate the defrosting process and the defrosting process is terminated by the time parameter, could not adjust the net defrosting time by itself. Therefore, a complex defrost-control method, for which the photoelectric sensors start the defrosting process and it is terminated by the temperature parameter, is preferred because of the adjustment of the net defrosting time. Regardless of the defrost-control method, the first defrosting cycle is activated earlier than the times that are determined in the second and third cycles and so on, because the first operation cycle can decide the characteristics of the subsequent cycle.

Experimental Study of a High Efficiency Transport Refrigeration Container under Cooling and Defrosting Conditions (고효율 냉동 컨테이너의 냉각 및 제상 실험)

  • Mun, Je-Cheol;Ardiyansyah, Ardiyansyah;Choi, Kwang-Il;Oh, Jong-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.277-281
    • /
    • 2008
  • This paper presents the development of a high efficiency transport refrigeration system for sliced-raw fish transportation. The refrigeration system is equipped with heat storage for reverse cycle-hot gas defrost (the stored heat is used during defrost cycle of the system). System performance and container operating conditions are analyzed during experimental investigation on a $3,225{\times}1,740{\times}1,640\;mm$ full-scale refrigerated container under cooling and defrosting conditions. The prototype system indicates better performance in terms of shorter cooling-down time, shorter defrost time and smaller fluctuations of refrigerated container's temperature.

  • PDF

Experimental Study on Heating Performance of Heat Pump Chiller under Overload, Frost and Defrost Conditions (과부하 및 착.제상 조건에서 히트펌프 칠러의 난방성능에 관한 실험 연구)

  • Kim, Jung-Seok;Kwon, Young-Chul;Chun, Chong-Keun;Park, Sam-Jin;Han, Hwa-Taik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the performance characteristics of the heat pump chiller under heating conditions were experimentally investigated. Capacity, input power and COP under overload, frost and defrost conditions were obtained. The experimental data for the heat pump chiller were measured using the air-enthalpy calorimeter and the constant temperature water bath. At overload condition, the heating capacity and COP increase about 25.7% and 19.1%, respectively. The variations of the evaporator, the compressor outlet and the condenser temperature were obtained under frost and defrost conditions. The frost and defrost period of the heat exchanger decreases about 36.0~56.1%.

Quantitative Visualization of Ventilation Flow for Defrost Mode in a Real Passenger Car (제상모드에 대한 실차 내부 환기유동의 정량적 가시화 연구)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • Thermal comfort inside a passenger car has been receiving large attention in automobile industries. Especially, the performance of windshield defroster is important in the design of a car to ensure passenger comport and safety. Thereby, better understanding on the ventilation flow along the vehicle windshield is essential to evaluate the performance of windshield defroster. However, most previous studies dealt with the defrost flow using CFD (computational fluid dynamics) calculations or scale-down model experiments. In this study, a real commercial automobile was used to investigate the flow discharged from the vehicle defroster and the ventilation flow along the windshield using a PIV velocity field measurement technique. The experimental data would be useful to understand the flow characteristics in detail and also can be used to validate numerical predictions.

Feasibility of the Defrost Control by Photoelectric Technology via Comparison with the Temperature Differential Defrosting Method (온도차 감지 제상법과의 비교를 통한 광센서 제상법의 타당성 검증을 위한 연구)

  • Jeon, Chang-Duk;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.434-440
    • /
    • 2014
  • Experiments were performed to verify if performance and characteristic curves obtained from the temperature differential defrosting method, where surface temperature is measured to judge defrosting condition, can be reproduced by the photoelectric technology where defrosting condition is judged by photoelectric sensors. The output voltage of a phototransistor and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger are compared. The results showed that the photoelectric sensors can be used as a defrost control device. On-off control timings in temperature differential defrosting method are in good agreement with those predicted by the high and low threshold output voltages of the photoelectric sensor.

Effect of Frost and Defrost on the Operating Characteristics of Refrigeration System (착상과 제상이 냉동장치의 운전특성에 미치는 영향)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.5-10
    • /
    • 2010
  • This study was investigated the effect on operating characteristics of apparatus according to frosting and defrosting to develop of new defrosting equipment. The results showed as following. Frost was almost removed using the defrosting equipment with roll brush type that defrosting is possible under operating condition. Also, the temperature of compressor inlet, evaporator inlet and outlet showed higher value because of heat transfer resistance of cooling pipe frost comparing with defrosting condition. And the compressor work showed 10% lower and COP was presented 24% higher values than defrosting condition. Therefore, defrosting for cooling coil of refrigeration and low temperature storage was effected on operation and performance characteristics of equipment. This highly effects on real refrigeration apparatus which is operated in year-around.