• Title/Summary/Keyword: Deformation sensor

Search Result 240, Processing Time 0.028 seconds

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

Experiments for measuring parts deformation and misalignments using a visual sensor (시각센서를 이용한 부품변형 및 상대오차 측정 실험)

  • 김진영;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1395-1398
    • /
    • 1997
  • Flexible parts comparing with rigid parts can be deformed by contact force during assembly. for successful assembly, information about their deformation as well as possible misalignment between mating parts is essential. Howecer, because of the complex relationship between parts deformation and reaction forces, it is difficult to acquire all required information from the reaction forces alone. In this paper, we measure parts deformation and misalignments by using the visual sensing system presented for flexible parts assembly. Experimental results show that the system can be effectively used for detecting parts deformation and misalignments between mating parts.

  • PDF

The Effect of the Deformation on the Sensitivity of a Flexible PDMS Membrane Sensor to Measure the Impact Force of a Water Droplet (액적의 충격력 측정을 위한 유연 멤브레인 센서의 PDMS 변형에 의한 민감도의 영향)

  • Kang, Dong Kwan;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • This study investigates the effect of the deformation on the sensitivity of a flexible polydimethylsiloxane (PDMS) membrane sensor. A PDMS membrane sensor was developed to measure the impact force of a water droplet using a silver nanowire (AgNW). The initial deformation of the membrane was confirmed with the application of a tensile force (i.e., tension) and fixing force (i.e., compressive force) at the gripers, which affects the sensitivity. The experimental results show that as the tension applied to the membrane increased, the sensitivity of the sensor decreased. The initial electrical resistance increased as the fixing force increased, while the sensitivity of the sensor decreased as the initial resistance increased. The movement of the membrane due to the impact force of the water droplet was observed with a high-speed camera, and was correlated with the measured sensor signal. The analysis of the motion of the membrane and droplets after collision confirmed the periodic movement of not only the membrane but also the change in the height of the droplet.

A Study of Aging of Oxygen Sensor (II) (산소센서의 열환에 관한 연구 (II))

  • 손건석;윤승원;고성혁;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Oxygen sensor taken from the aftertreatment systems of 4 vehicles which had been aged in domestic field examined for aging effects on emissions using a idel engine bench. also the artificial sensor signal generated by function generator was supplied to ECU, instead of oxygen sensor to simulate aging effects of oxygen sensor. This study shows that reduction of amplitude, deformation and shift of mean value of aged sensors seriously affect on the engine out emissions and the performance of TWC.

  • PDF

Health Monitoring of High-rise Building with Fiber Optic Sensor (SOFO)

  • Mikami, Takao;Nishizawa, Takao
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.27-37
    • /
    • 2015
  • Structural health monitoring is becoming more and more important in the domain of civil engineering as a proper mean to increase and maintain the safety, especially in the land of earthquakes like Japan. In many civil structures, the deformations are the most relevant parameter to be monitored. In this context, a monitoring technology based on the use of long-gage fiber optic deformation sensor, SOFO is being applied to a 33-floors tall building in Tokyo. Sensors were installed on the $2^{nd}$ floor's steel columns of the building on May 2005 in the early stage of the construction. The installed SOFO sensors were dynamic compatible ones which enable both static and dynamic measurements. The monitoring is to be performed during the whole lifespan of the building. During the construction, static deformations of the columns had been measured on a regular basis using a reading unit for static measurement and dynamic deformation measurements were occasionally conducted using a reading unit for dynamic measurement. The building was completed on August 2006. After the completion, static and dynamic deformation measurements have been continuing. This paper describes a health monitoring technology, SOFO system which is applicable to high-rise buildings and monitoring results of a 33-floors tall building in Tokyo from May 2005 to October 2010.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Deformation Measuring of Tensegrity Structure by Optical Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 텐서그리티 구조물의 변형 계측)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.6
    • /
    • pp.95-100
    • /
    • 2008
  • The object of this paper is to verify possible to monitor the deformation of cable in the tensegrity structure. Also, always monitoring system of tensegrity structure using Fiber Bragg Grating Sensor is described. We carry out experiments with measuring deformation of cable in the tensegrity structure based on loading conditions. In the result of experiment, the Fiber Bragg Grating Sensors shows accurate response to the loading conditions. Therefore, we can make sure the possibility of Fiber Bragg Grating Sensor in health monitoring of the cable structure like tensegrity structure.

  • PDF