• Title/Summary/Keyword: Deformation modulus

Search Result 601, Processing Time 0.032 seconds

Estimation of the Deformation Modulus for a Fault Zone using Crown Settlements Measured During Tunnel Excavation (터널 굴착 중 측정된 천단변위를 이용한 단층대의 변형계수 산정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Song, Gyu-Jin;Seo, Yong-Seok;Kim, Ji-Soo;Woo, Sang-Baik
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.227-235
    • /
    • 2014
  • The deformation modulus is one of the essential factors in determining ground behavior and safety during tunnel excavation. In this study, we conducted a back-analysis using crown settlements measured during tunnel excavation, using a horizontal inclinometer on a fault zone of pegmatite, and calculated the deformation modulus of the fault zone. This deformation modulus calculation was then compared with deformation moduli found through established relationships that use the correlation between RMR and the deformation modulus, as well as the results of pressure-meter tests. The deformation moduli calculated by back-analysis differs significantly from the deformation moduli determined through established relationships, as well as the results from pressure-meter tests conducted across the study area. Furthermore, the maximum crown settlements derived from numerical analysis conducted by applying deformation moduli determined by these established relationships and the pressure-meter tests produced noticeable differences. This result indicates that in the case of a weak rock mass, such as a fault zone, it is inappropriate to estimate the deformation modulus using preexisting relationships, and caution must be taken when considering the geological and geotechnical characteristics of weak rock.

A Comparison of Static and Dynamic Deformation Modulus by Dynamic Plate Test (동평판 재하시험을 이용한 정적 및 동적 변형계수 비교)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.335-342
    • /
    • 2003
  • The method of measuring ground deformation modulus, in situ-testing has the disadvantage where the exam number is limited because it needs counter weight and a lot of measurement times. Recently, it has supplemented this problem and the equipments by which measurement can be made quickly are developed and applied in field., That is Falling Weight Deflectometer(FWD), Light Drop Weight Tester(LDWT), Geogauge. Light Drop Weight Teste.(LDWT) is introduced firstly in the name of ‘a lightweight fall circuit tester for a railroad public corporation’ by KTX. Since KTX introduced LDWT, a number of research organizations have used LDWT to find out domestic standard for quality management of base ground. In this study we used ZFG 02 which was manufactured by Stendal in Germany and measured the dynamic deformation modulus in soil box and in-situ. And we analyzed the correlation of the dynamic deformation modulus with static deformation modulus based on plate test in the same ground.

The Evaluation for Estimation Method of Deformation Modulus of Rock Mass Using RMR System (RMR을 이용한 암반의 주요 변형계수 추정식의 적용성 평가)

  • Chun, Byung-Sik;Lee, Yong-Jae;Jung, Sang-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.25-32
    • /
    • 2006
  • The deformation modulus of rock masse is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relationship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masse.

  • PDF

Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process (재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성)

  • Song, Chang-Seob;Kim, Myeong-Hwan;Kim, Gi-Beom;Park, Oh-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

Applications of Shear Wave Velocity in Geotechnical Engineering (지반공학 분야에서의 전단파속도의 활용)

  • Kim, Dong-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.7-23
    • /
    • 2007
  • The shear wave velocity is directly related to the deformation characteristic of soils which is an engineering property represented by the shear modulus. This feature presents an opportunity of advantageous utilization of the shear wave velocity for deformation analysis in geotechnical engineering applications, since the deformation modulus is determined on strong theoretical basis, whereas penetration resistances such as N by SPT or qc by CPT rely on empirical relations. Furthermore, it is an engineering property that can be evaluated by performing the same basic measurement in the laboratory and field, and various problems in geotechnical engineering can be dealt with economically and reliably when the field and laboratory methods are combined effectively. In this article, assessment of nonlinear deformation characteristic of soils based on synergic use of the field and laboratory test results is described, and representative case histories of geotechnical applications of the shear wave velocity are illustrated.

  • PDF

The Analysis of Smart Plate Using Enhanced First Shear Deformation Theory (개선된 일차전단변형이론을 이용한 지능구조평판의 거동해석)

  • Oh, Jin-Ho;Kim, Heung-Su;Rhee, Seung-Yun;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.663-668
    • /
    • 2007
  • An enhanced first shear deformation theory for composite plate is developed. The detailed process is as follows. Firstly, the theory is formulated by modifying higher order zigzag theory. That is, the higher order theory is separated into the warping function representing the higher order terms and lower order terms. Secondly, the relationships between higher order zig-zag field and averaged first shear deformation field based on the Reissner-Mindlin's plate theory are derived. Lastly, the effective shear modulus is calculated by minimizing error between higher order energy and first order energy. Then the governing equation of FSDT is solved by substituting shear modulus into effective shear modulus. The recovery processing with the nodal unknown obtained from governing equation is performed. The accuracy of the present proposed theory is demonstrated through numerical examples. The proposed method will serve as a powerful tool in the prediction of laminated composite plate.

  • PDF

Dynamic Deformation Characteristics of Korean Hydraulic-Fills Soil Deposits (국내 준설매립토 지반의 동적변형특성)

  • 김동수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.69-76
    • /
    • 1999
  • Because of the limited land in Korea most of the projects require large-scale reclamation. The hydraulic-filled soil deposits are usually loose and susceptible to be liquified during earthquake. The dynamic deformation characteristics which expressed by shear modulus and damping ratio are important to analyze the earthquake ground motion. In this paper resonant column tests were performed on five hydraulic filled soil in Korea and the deformational characteristics at both small and medium strains were investigated. The coefficients in the Hardin equation to predict the representative maximum shear modulus and modulus reduction cure are also proposed.

  • PDF

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses (절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.271-285
    • /
    • 2020
  • In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.

Analysis of Co-relationship between Rock Mass Grade by RMR and Estimation Method of Rock Deformation Modulus by Suggested Formulas (RMR 분류에 의한 암반등급과 제안식에 의한 암반 변형계수 추정기법의 상관관계 분석)

  • Do, Jongnam;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.13-26
    • /
    • 2012
  • The deformation modulus of rock masses is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. So it is possible that there might be limitations to estimate appropriate deformation modulus in South Korea using the empirical formulas. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relation ship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masses.

Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression

  • Asadizadeh, Mostafa;Moosavi, Mahdi;Hossaini, Mohammad Farouq
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • This paper presents the results of an empirical study in which square rock-like blocks containing two parallel pre-existing rough non-persistent joints were subjected to uniaxial compression load. The main purpose of this study was to investigate uniaxial compressive strength and deformation modulus of jointed specimens. Response Surface Method (RSM) was utilized to design experiments and investigate the effect of four joint parameters, namely joint roughness coefficient (JRC), bridge length (L), bridge angle (${\gamma}$), and joint inclination (${\theta}$). The interaction of these parameters on the uniaxial compressive strength (UCS) and deformation modulus of the blocks was investigated as well. The results indicated that an increase in joint roughness coefficient, bridge length and bridge angle increased compressive strength and deformation modulus. Moreover, increasing joint inclination decreased the two mechanical properties. The concept of 'interlocking cracks' which are mixed mode (shear-tensile cracks) was introduced. This type of cracks can happen in higher level of JRC. Initiation and propagation of this type of cracks reduces mechanical properties of sample before reaching its peak strength. The results of the Response Surface Methodology showed that the mutual interaction of the joint parameters had a significant influence on the compressive strength and deformation modulus.