• 제목/요약/키워드: Deformation mechanisms

검색결과 254건 처리시간 0.026초

다구찌 방법을 이용한 다발압출 금형설계에 관한 연구 (A Study on the Die Set Design for Multi-Hole Extrusion Process Using Taguchi Method)

  • 조성진;이재원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

Quartz의 연삭 특성에 관한 연구 (II) (A Study on the Grinding Characteristics of the Quartz(II))

  • 임종고;하상백;김성헌;최환;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.875-879
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

저 T/Tm 온도에서 공석강 및 과공석강의 시간의존성 소성변형 기구 (Mechanisms of Time-dependent Plastic Deformation of Eutectoid and Hypereutectoid Steels at Low T/Tm Temperatures)

  • 최병호;정기채;박경태
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.359-365
    • /
    • 2016
  • The rate-controlling mechanisms for time-dependent plastic deformation of eutectoid and hyper-eutectoid pearlitic steels at low $T/T_m$ temperatures were explored. The strain rate - stress data obtained from a series of constant load tensile tests at $0.25{\sim}0.30T/T_m$ were applied to the power law, the lattice friction controlled plasticity, and the obstacle controlled plasticity. Of these models, the obstacle controlled plasticity was found to best-describe the rate-controlling mechanism for time-dependent plastic deformation of two steels at low $T/T_m$ temperatures in terms of the activation energy for overcoming the obstacles against dislocation glide in ferrite. The deformed microstructures revealed the dislocation forests of a high density as the main obstacles. In addition, the obstacle controlled plasticity well-explained the effects of cementite on the $0^{\circ}K$ flow stress of two steels.

Yield mechanisms of stepped cantilevers subjected to a dynamically applied constant tip force

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제3권5호
    • /
    • pp.445-462
    • /
    • 1995
  • Previous studies of a stepped cantilever with two straight segments under a suddenly applied constant force (a step load) applied at its tip have shown that the validity of deformation mechanisms is governed by certain geometrical restrictions. Single and double-hinge mechanisms have been proposed and it is shown in this paper that for a stepped cantilever with a stronger tip segment, i.e. $M_{0.1}$ > $M_{0.2}$, where $M_{0.1}$ and $M_{0.2}$ are the dynamic fully plastic bending moments of the tip and root segments, respectively, the family of possible yield mechanisms is expanded by introducing new double and triple-hinge mechanisms. With the aid of these mechanisms, it is shown that all initial deformations can be derived for a stepped cantilever regardless of its geometry and the magnitude of the dynamic force applied.

$YBa_2Cu_3O_{7-x}$ 세라믹 초전도체의 크리프와 초소성변형에 대한 변형기관도 (Deformation Mechanism Map for Creep and Superplastic Deformation in $YBa_2Cu_3O_{7-x}$ Ceramic Superconductors)

  • 윤존도;초우예
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.718-724
    • /
    • 1996
  • Deformation mechanism map of Langdon-Mohammed type for YBa2Cu3O7-x superconducting ceramic was constructed by considering mechanisms of Nabarro-Herring Coble and powder-law creep and grain boundary sliding (GBS) with an accommodation by grain boundary diffusion. The map was found consistent with experi-mental results not only of the creep the also of the superplastic deformation. It showed the transition from interface reaction-controlled to the grain boundary diffusion-controlled GBS mechanism at about 1 ${\mu}{\textrm}{m}$ grain size and 100 MPa flow stress in agreement with the experimental results.

  • PDF

Effect of bridge lateral deformation on track geometry of high-speed railway

  • Gou, Hongye;Yang, Longcheng;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.219-229
    • /
    • 2018
  • This paper presents an analytical model to analyze the mapping relationship between bridge lateral deformation and track geometry of high-speed railway. Based on the rail deformation mechanisms, the deformation of track slab and rail at the locations of fasteners are analyzed. Formulae of rail lateral deformation are derived and validated against a finite element model. Based on the analytical model, a rail deformation extension coefficient is presented, and effects of different lateral deformations on track geometry are evaluated. Parametric studies are conducted to evaluate the effects of the deformation amplitude, fastener stiffness and mortar layer stiffness on the rail deformation. The rail deformation increases with the deformation of the girder, and is dependent on the spacing of the fasteners, the elastic modulus of the rail's material, and the moment of inertia of the rail's section.

2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구 (Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy)

  • 김정한;염종택;박노광;이종수
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

AZ31 Mg 합금의 가공 조건에 따른 고온 성형성 연구 (Effect of Processing Variables on the High Temperature Formability of AZ31 Mg alloy)

  • 이병호;신광선;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.80-83
    • /
    • 2004
  • High temperature deformation behavior of AZ31 Mg alloy was investigated in this study on the basis of a processing map $(\varepsilon\approx0.6)$. To construct a processing map, compression tests were carried out at wide range of temperatures and strain rates $(T=250\~500^{\circ}C,\;\varepsilon=10^{-4}\~100/s)$. Two regions of high deformation efficiency $(\eta)$ were identified as: (1) a dynamic recrystalization (DRX) domain at $250^{\circ}C$ and 1/s and (2) a superplasticity domain at $450^{\circ}C$ and $10^{-4}/s$. Possible deformation mechanisms operating at high temperature were discussed in relation to the activation energy. A two-stage deformation method was found to be effective in enhancing the superplasticity of AZ31 Mg alloy. From the two-stage deformation method, tensile elongation of $1200\%$ was obtained at the superplastic domain.

  • PDF

304 스테인레스강의 준동적재결정에 관한 연구 (A Study on Meta-Dynamic Recrystallization of 304 Stainless Steels)

  • 한형기;조상현;유연철
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.42-52
    • /
    • 2001
  • The static softening mechanisms of 304 stainless steel were studied by hot torsion test. The interrupted deformation tests were performed In the range of 900~$1100^{\circ}C$ and 5.0$\times$$10^{-2}$- 5.0$\times$$10^0$/sec. The metadynamic recrystallization (MDRX) could be distinguished from the static recrystallization (SRX). Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. To the exact prediction of MDRX, the MDRX parameter, which could be simultaneously estimated by the interpass time and Zener-Hollomon parameter, was developed. The time lot 50% MDRX, $t_{0.5} was modeled using the deformation parameters : $t_{0.5} = 1.33\times10^{-11}$ $\.\varepsilon^{-0.41}$ D exp(230.3kJ/mol/RT) and the predicted value was very correspondent with the measurement. It was found that the static parameters such as interpass time can control the dynamic states in the several successive deformation process.

  • PDF

생체모방 물갈퀴형 IPMC 구동기 설계 (Biomimetic Design of IPMC Actuator having Webfoot Form)

  • 김선기;김온아;이승엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1558-1562
    • /
    • 2008
  • Ionic polymer metal composite (IPMC), one of Electro- Active Polymer (EAP) actuators, has great attention due to the low-voltage driven, large deformation and its potential for artificial muscles. In this paper, we firstly review fish swimming modes using various propulsion mechanisms. Based on study on the swimming mechanisms, we develop an underwater robot actuator which mimics fanning motion of webfoot form. It consists of four actuators fabricated by using IPMC and PDMS which mimics Bio-inspired motion Experiments using a prototype show that the webfooted IPMC actuator generates large deformation and propulsion.

  • PDF