• Title/Summary/Keyword: Deformation mechanisms

Search Result 254, Processing Time 0.026 seconds

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

Impact behavior on temperature effect of nano composite materials (온도변화에 따른 나노 복합재료의 충격거동)

  • KIM, Hyung-Jin;LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.

An experimental study of the friction and wear on counterpart roughness of silica particle reinforced nano composites (상대재의 거칠기에 따른 실리카 입자강화 나노 복합재료의 마찰 및 마모에 관한 실험적 연구)

  • Kim, Hyung Jin;Lee, Jung-Kyu;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.162-168
    • /
    • 2014
  • The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.

Comparative Studies on the Reactions of Carbamyl and Thiocarbamyl Halides with NH3 in the Gas Phase and in Aqueous Solution: A Theoretical Study

  • Kim, Chang-Kon;Han, In-Suk;Sohn, Chang-Kook;Yu, Yu-Hee;Su, Zhishan;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1955-1961
    • /
    • 2012
  • In this work, the reactions of carbamyl and thiocarbamyl halides with $NH_3$ were studied in the gas phase at the MP2(FC)/6-31+G(d) level of theory. Single point calculations were performed at the QCISD/6-311+G(3df,2p) to refine the energetics. The reaction mechanisms were also studied in aqueous solution. The structures were fully optimized at the CPCM-MP2(FC)/6-31+G(d) and refined by a single point CPCM-QCISD/6-311+G(3df,2p) calculations. The reaction mechanisms for the title compounds were compared with those for the acetyl and thioacetyl halides. The lower reactivity of carbamyl (and thiocarbamyl) groups was explained by comparing the C=O and C=S ${\pi}$-bond strengths as well as resonance contributions in the ground state.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Semi-active damped outriggers for seismic protection of high-rise buildings

  • Chang, Chia-Ming;Wang, Zhihao;Spencer, Billie F. Jr.;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-451
    • /
    • 2013
  • High-rise buildings are a common feature of urban cities around the world. These flexible structures frequently exhibit large vibration due to strong winds and earthquakes. Structural control has been employed as an effective means to mitigate excessive responses; however, structural control mechanisms that can be used in tall buildings are limited primarily to mass and liquid dampers. An attractive alternative can be found in outrigger damping systems, where the bending deformation of the building is transformed into shear deformation across dampers placed between the outrigger and the perimeter columns. The outrigger system provides additional damping that can reduce structural responses, such as the floor displacements and accelerations. This paper investigates the potential of using smart dampers, specifically magnetorheological (MR) fluid dampers, in the outrigger system. First, a high-rise building is modeled to portray the St. Francis Shangri-La Place in Philippines. The optimal performance of the outrigger damping system for mitigation of seismic responses in terms of damper size and location also is subsequently evaluated. The efficacy of the semi-active damped outrigger system is finally verified through numerical simulation.

Thermal Analysis on Glass Backplane of OLED Displays During Joule Induced Crystallization Process (OLED 디스플레이 제작을 위한 Joule 유도 결정화 공정에서의 유리기판에 대한 열해석)

  • Kim, Dong-Hyun;Park, Seung-Ho;Hong, Won-Eui;Chung, Jang-Kyun;Ro, Jae-Sang;Lee, Seung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.797-802
    • /
    • 2009
  • Large area crystallization of amorphous silicon thin-films on glass substrates is one of key technologies in manufacturing flat displays. Among various crystallization technologies, the Joule induced crystallization (JIC) is considered as the highly promising one in the OLED fabrication industries, since the amorphous silicon films on the glass can be crystallized within tens of microseconds, minimizing the thermally and structurally harmful influence on the glass. In the JIC process the metallic layers can be utilized to heat up the amorphous silicon thin films beyond the melting temperatures of silicon and can be fabricated as electrodes in OLED devices during the subsequent processes. This numerical study investigates the heating mechanisms during the JIC process and estimates the deformation of the glass substrate. Based on the thermal analysis, we can understand the temporal and spatial temperature fields of the backplane and its warping phenomena.

Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis (유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구)

  • Sur, Uk-Hwan;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.135-140
    • /
    • 2004
  • Wear mechanisms may be briefly classified by mechanical, chemical and thermal wear. A plane strain finite element method is used with a new material stress and temperature fields to simulate orthogonal machining with continuous chip formation. Deformation of the workpiece material is healed as elastic-viscoplastic with isotropic strain hardening and the numerical solution accounts for coupling between plastic deformation and the temperature field, including treatment of temperature-dependent material properties. Effect of the uncertainty in the constitutive model on the distributions of strait stress and temperature around the shear zone are presented, and the model is validated by comparing average values of the predicted stress, strain, and temperature at the shear zone with experimental results.

The Removal Of Voids In The Grooved Interfacial Region Of Silicon Structures Obtained With Direct Bonding Technique (홈구조 실리콘 접합 경계면에서의 Void 제거를 위한 실리콘 직접접합 방법)

  • Kim, Sang-Cheol;Kim, Eun-Dong;Kim, Nam-Kyun;Bahna, Wook;Soo, Gil-Soo;Kim, Hyung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.310-313
    • /
    • 2002
  • Structures obtained with a direct boning of two FZ silicon wafers joined in such a way that a smooth surface of one wafer was attached to the grooved surface of the other were studied. A square net of grooves was made with a conventional photo lithography process. After high temperature annealing the appearance of voids and the rearrangement of structural defects were observed with X-ray diffraction topography techniques. It was shown that the formation of void free grooved boundaries was feasible. In the cases when particulate contamination was prevented, the voids appeared in the grooved structures could be eliminated with annealing. Since it was found that the flattening was accompanied with plastic deformation, this deformation was suggested to be intensively involved in the process of void removal. A model was proposed explaining the interaction between the structural defects resulted in "a dissolution" of cavities. The described processes may occur in grooved as well as in smooth structures, but there are the former that allow to manage air traps and undesirable excess of dislocation density. Grooves can be paths for air leave. According to the established mechanisms, if not outdone, the dislocations form local defect arrangements at the grooves permitting the substantial reduction in defect density over the remainder of the interfacial area.

  • PDF

Bending Mechanism Analysis and Bending Coupler Optimal Design for Laparoscopic Surgical Instrument (복강경수술기구의 벤딩메커니즘 해석 및 벤딩커플러 최적설계)

  • Hwang, Dal Yeon;Moon, Dae Hoan;Choi, Seung Wook;Won, Jong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.434-441
    • /
    • 2013
  • Bending motion has been used in the surgical instruments with bending structures and tendon mechanisms. A simplified bending angle amplification ratio between the proximal and distal bending joint was derived in this article. The bending structure of disk and rib in the proximal joint was analyzed based on finite element method with an emphasis on the circumferential uniformity of bending stiffness. Regarding the distal joint, optimal design and sensitivity analysis was done with four design variables of outer and inner diameter, rib height and rib width while maximizing the deformation under the stress distribution below the yield stress. Outer diameter and rib width are most critical to maximum deformation as the outer diameter and inner diameters are so to maximum equivalent stress.