• 제목/요약/키워드: Deformation effect

검색결과 3,242건 처리시간 0.026초

Deformation Analysis of Micro-Sized Material Using Strain Gradient Plasticity

  • Byon S.M.;Lee Young-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.621-633
    • /
    • 2006
  • To reflect the size effect of material $(1\sim15{\mu}m)$ during plastic deformation of polycrystalline copper, a constitutive equation which includes the strain gradient plasticity theory and intrinsic material length model is coupled with the finite element analysis and applied to plane strain deformation problem. The method of least square has been used to calculate the strain gradient at each element during deformation and the effect of distributed force on the strain gradient is investigated as well. It shows when material size is less than the intrinsic material length $(1.54{\mu}m)$, its deformation behavior is quite different compared with that computed from the conventional plasticity. The generation of strain gradient is greatly suppressed, but it appears again as the material size increases. Results also reveal that the strain gradient leads to deformation hardening. The distributed force plays a role to amplify the strain gradient distribution.

모터싸이클 브레이크 디스크의 열 해석에 관한 연구 (A Study on Thermal Analysis of Motorcycle Brake Disk)

  • 류미라;김영희;변상민;박흥식
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.34-40
    • /
    • 2009
  • The effect of frictional factors on thermal stress and deformation volume of motorcycle brake disk was studied by using a disk-on-pad type friction tester. It has an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, thermal stress and deformation volume by using design of experiment with 4 elements were investigated for thermal analysis with regression analysis. Thermal stress and thermal deformation are obtained by the application of temperature from mechanical test. From this study, the result showed that the motorcycle brake disk with ventilated hole 3 had the most excellent thermal stress and deformation volume. The regression equation had a trust rate of 95% for the prediction of thermal stress and deformation volume of motorcycle brake disk was composed.

  • PDF

알루미늄 판재의 비대칭 압연 시 변형률 상태에 미치는 압연 변수의 영향 (Effect of Deformation Parameters on The Evolution of Strain State During Asymmetrical Rolling in Aluminum Sheet)

  • 강형구;박수호;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.460-462
    • /
    • 2005
  • Asymmetrical rolling was performed with different working roll speeds of upper and lower rolls. In order to promote the shear deformation during asymmetrical rolling, various deformation parameters of initial sheet thickness, rolling reduction, roll speed ratio and roll radius are considered. The evolution of texture during asymmetrical rolling was shown by the calculation of orientation distribution function (ODF). The effect of deformation parameters on shea. deformation were investigated by simulations with the finite element method (FEM). Asymmetrical rolling gave rise to the development of pronounced strain gradients throughout the thickness layers which resulted in the formation of strong texture gradients in the sheet.

  • PDF

이상 스테인리스강의 변형거동에 미치는 질소의 영향 (Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel)

  • 이형직;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.284-289
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied. The variation of strength was correlated with the characteristic microstructures pertaining to nitrogen. Analysis based on Hall-fetch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism. It has been verified in this study that the higher nitrogen content provides a dual-phase microstructure with smaller strength difference between austenite and ferrite resulting into the earlier transfer of inelastic deformation from austenite to ferrite.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구 (An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder)

  • 안상태
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

균열로의 그늘효과에 의한 슬랩변형에 관한 수치해석적 연구 (Numerical Study of Shadow Effect on Slab Deformation in Reheating Furnace)

  • 노정훈;황병복;맹주원;김재도
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.132-139
    • /
    • 2011
  • Three dimensional simulations were performed for the deformation of a slab in a roller hearth type slab reheating furnace. The main objective of this study was to examine the deformation pattern of the slab due to the shadow effect, i.e., the temperature difference between the upper and lower slab surfaces, in particular, the variations of displacement and effective stress in the vertical direction. A commercially available FE code, ANSYS Workbench $12.1^{TM}$, was used in a fully coupled thermo-elasticity analysis. Several cases with different slab surface temperatures were selected for the simulations. For the sake of simplicity, the temperature environment inside the furnace was assumed to be homogeneous for the upper and lower faces of the slab. Two cases of with different slab width were selected as model geometry. The deformation patterns were computed and explained in terms of periodicity and symmetry. The results indicated that the shadow effect leads to a significant displacement in the vertical direction and, thereby, is one of the main reasons for the separation of the slab and its supports. These simulations also predicted that the deformation is more severe along the transverse direction than along the longitudinal direction.

변형형상에 따른 정규압밀 점성토의 압밀계수 변화 (The Influence of Deformation Modes on the Coefficient of Consolidation in the Normally Consolidated Clay)

  • 박재현;정영훈;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.823-830
    • /
    • 2004
  • Consolidation tests under various deformation modes were performed to investigate the effect of deformation modes on the coefficient of consolidation in the normally consolidated clay in remolded and undisturbed clay. The degree of soil anisotropy was evaluated using cross-anisotropic elasticity theory suggested by Graham et al.(1983). Experimental results showed that the vertical compressibility was larger than the horizontal compressibility by $12{\sim}21%$ for the remolded clay and by $23{\sim}60%$ for the undisturbed clay, respectively. The results of a series of consolidation tests under the specific deformation modes showed that the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 3 dimensional strain condition due to different deformation mode. Furthermore, the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 1 dimensional horizontal strain condition by $40{\sim}60%$ in undisturbed clay, which clearly emphasized the significant effect of soil anisotropy on the rate of consolidation. Consequently, it can be concluded that the anisotropic deformation modes of soils, especially naturally deposited clays, should be taken into account for more accurate evaluation of the coefficient of consolidation.

  • PDF

3-D 점탄성 모델을 이용한 복합재 성형후 잔류변형해석 및 몰드 효과 연구 (Residual Deformation Analysis of Composite by 3-D Viscoelastic Model Considering Mold Effect)

  • 이홍준;김위대
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.426-433
    • /
    • 2021
  • 탄소 섬유 강화 복합재료는 오토클레이브 공정 시 발생하는 잔류응력이 발생하고, 스프링 인, 뒤틀림과 같은 열변형으로 인해 치수 결함이 발생한다. 열변형의 주요원인은 제품의 형상, 수지의 화학 수축과 열팽창, 몰드의 재질과 표면 상태에 따른 몰드 효과 등 다양한 요인에 의해 발생한다. 본 연구는 열변형을 예측하기 위해 점탄성 모델 해석 기법을 평판 모델에 적용하여 열변형의 주요 원인인 수지의 화학 수축과 열팽창의 영향을 분석했고, 몰드 유무에 따른 3-D 점탄성 모델의 해석 기법을 검증했다. 검증된 3-D 점탄성 모델의 해석 기법을 이용하여 L-형상의 몰드 효과를 분석한 결과, 동일한 재질의 몰드를 사용했더라도 표면 상태에 따라 잔류 변형이 다르게 나타났다.

고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 가공온도의 영향 (Effect of Deformation Temperature on Mechanical Properties of High Manganese Austenitic Stainless Steel)

  • 강창룡;허태영;김영화;구차진;한현성;이상희
    • 한국해양공학회지
    • /
    • 제26권3호
    • /
    • pp.55-60
    • /
    • 2012
  • This study was carried out to investigate the effect of the deformation temperature in high manganese austenitic stainless steel. ${\alpha}$'-martensite was formed with a specific direction by deformation. The volume fraction of the deformation induced martensite was increased by increasing the degree of deformation and decreasing the deformation temperature. With the increase in the deformation, the hardness and tensile strength were increased, while the elongation was rapidly decreased at the initial stage of the deformation, and then gradually decreased. The hardness and tensile strength were increased and the elongation was decreased with adecrease in the deformation temperature. The hardness and tensile strength were strongly controlled by the volume fraction of martensite, but the elongation was controlled by the transformation behavior of the deformation induced martensite.