• Title/Summary/Keyword: Deformation Tube

Search Result 388, Processing Time 0.023 seconds

Properties of Composite Bushing with Filament Winding Tension (필라멘트 와인딩 장력에 따른 Composite Bushing의 특성에 관한 연구)

  • Cho, Han-Goo;Kim, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.34-34
    • /
    • 2010
  • This paper describes effect of the bending deformation of high voltage composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual deflection was decreased in the range of 14.0~12.2 mm.

  • PDF

Failure Behavior of Piercing Plug during Seamless Tube Manufacturing Process (심리스 튜브 제조공정 시 피어싱 플러그의 파손거동)

  • Lim, Young-Bin;Yoon, Jeong-Mo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.207-214
    • /
    • 2017
  • In this study, failure behavior of piercing plug for seamless tube manufacturing process was studied. Three different kinds of passed piercing plugs (10, 90, 215 times) were prepared. The shape deformation of the passed piercing plugs was observed by 3D coordinate measuring machine, and the oxidized layer on the surface of piercing plug was observed by optical microscopy. The length reduction of piercing plug presented at 215 times passed plug. It was found that the oxidized layer consisted of outer scale, inner scale and internal oxidation layers, and the inner scale layer had vertical cracks, and interfaces had horizontal cracks. We proposed the failure mechanism of piercing plug during seamless tube manufacturing process based on the formation of vertical and horizontal crack.

A Study on Tube-to-Tube Similar Friction Welding of Rocket Motor Nozzle Material and its AE Evaluation (로켓모터용 노즐재의 관대관 마찰용접과 AE평가에 관한 연구)

  • Gong, Yu-Sik;O, Se-Gyu;Lee, Bae-Seop
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.66-73
    • /
    • 1999
  • This paper presents the experimental examinations and statistical quantitative analysis of the correlation between the cumulative counts of acoustic emission(AE) during plastic deformation periods of the welding and the tensile strength and other properties of the tube-to-tube welded joints of O.D. 30mm (I.D 18mm) nozzle steel. This is a new approach which attempts finally to develop real-time quality monitoring system for friction welding. And this study results in practical possiblility of real-time quality control more than 100% joint efficiency showing good weld no micro structural defects.

  • PDF

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.

Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory (금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구)

  • Jungseok, Seo;Joohong, Myong;Jiye, Bang;Gyejo, Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

Bending and buckling of spinning FG nanotubes based on NSGT

  • Zhang, Liang;Ko, Tzu-Hsing
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.243-256
    • /
    • 2022
  • The static analysis of spinning functionally graded (FG) nanotube on the basis of the nonlocal strain gradient theory (NSGT) is presented. The high-order beam theory is employed for mathematical modeling of the tube structures according to the Sinusoidal shear deformation beam theory. The energy conservation principle is operated to generate the equations. The centrifugal force is assumed along the tube length due to the rotating of the tube, moreover, the nanotube is made of functionally graded material (FGM) composed of ceramic and metal phases along the tube radius direction. The generalized differential quadratic method (GDQM) is utilized to solve the formulations. Finally, the numerical results are discussed in detail to examine the impact of different relevant parameters on the bending the buckling behavior of the rotating nanotube.

High strain rate test of aluminum alloy with torsional Hopkinson bar (비틂홉킨슨봉을 이용한 알루미늄합금의 고속 전단변형 실험)

  • 전병선;유요한;정동택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.80-83
    • /
    • 1997
  • The split Hopkinson bar technique is the most widely used method to study material behavior at high strain rate deformation. In the present paper, a torsional Hopkinson bar for testing thin-walled tube specimens at high strain rate is described. From the experiment of aluminum 6061, dynamic stress-strain relationship can be obtained and dynamic result is compared with static one.

  • PDF

Shadow Mask 제조공정의 열변형특성(I)

  • 손순식;서윤철;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.102-109
    • /
    • 1997
  • The surface deformation of shadow mask was studied by the experiments and numerical analysis for process improvement and delet of the stabilizing process in the shadow mask manufaturing line. To inverigate the thermal deformation of shadow mask with and without stabilizing process mask, data of spring strength, frame flatness, frame magnetic force and a mask surface curvature were measured. The tube characteristics of two kind of shadow masks were also investigated.

  • PDF

Finite Element Analysis and Validation for Dimpled Tube Type Intercooler Using Homogenization Method (균질화 기법을 이용한 딤플 튜브형 인터쿨러의 유한요소해석 및 검증)

  • Lee, Hyun-Min;Heo, Seong-Chan;Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • Three-dimensional finite-element methods(FEM) have been used to analyze the thermal stress of an exhaust gas recirculation(EGR) cooler due to thermal and pressure load. Since efficiency and capability of the heat exchanger are mainly dependent on net heat transferring area of the EGR cooler system, the tube inside the system has a numerous dimples on the surface. Thus for finite element analysis, firstly the dimple-typed tube is modeled as a plain element without the dimple, and then the equivalent thermal conductivities and elastic modulus are calculated. This work describes the numerical homogenization procedure of the dimple-typed tube and verifies the equivalent material properties by comparison of a single unit and the actual full model. Finally, the homogenization scheme presented in this study can be efficiently applied to finite element analyses for the thermal stress and deformation behavior of the EGR cooler system with the dimple-typed tube.

Creep Deformation and Rupture Behavior of Alloy 690 Tube (Alloy 690 전열관의 크리프 변형 및 파단 거동)

  • Kim, Woo-Gon;Kim, Jong-Min;Kim, Min-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.