• Title/Summary/Keyword: Deformation Modulus

Search Result 612, Processing Time 0.029 seconds

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

Effect of Boron on the Manufacturing Properties of Ti-2Al-9.2Mo-2Fe Alloy (Ti-2Al-9.2Mo-2Fe 합금의 후공정 특성에 미치는 보론의 영향)

  • Kim, Tae-Yong;Lim, Ka-Ram;Lee, Yong-Tai;Cho, Kyung-Mok;Lee, Dong-Geun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.636-641
    • /
    • 2015
  • Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

Analysis of Plugging Effect for Large Diameter Steel Pipe Piles Considering Driveability (CEL Method) (항타시공성을 고려한 대구경 항타강관말뚝의 폐색효과 분석(CEL해석))

  • Jeong, Sang-Seom;Song, Su-Min;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.21-33
    • /
    • 2017
  • This paper presents the analysis of plugging effect especially when the large diameter steel pipe pile was installed by considering driveability (BPM, blow per meter). The Coupled Eulerian-Lagrangian (CEL) technique was used to simulate the driving of open-ended piles into soil. To consider the driveability, the applied driving energy for each pile was obtained from the analysis results by using the wave equation. The parametric studies were performed for different pile diameters, penetration depths of pile, soil elastic modulus and BPM. It was found that the SPI is almost constant with increasing both the pile diameter and the required driving energy. It is also found that the plugging effect increases with increasing the pile length, resulting in the increase of lateral earth pressure. Based on this study the apparent magnitude and distribution of the lateral earth pressure is proposed for inside portion mobilizing soil plug.

Numerical Analysis of Light-weight Air Foamed Soils using Dredged Marine Clay for Soft Ground Improvement Method (준설점토 활용 경량혼합토의 연약지반개량공법 수치해석)

  • Yoon, Gillim;Kim, Sunbin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper presents the results of a numerical investigation on applicability of Light-weighted Foam Soils (LWFS) consisted of dredged soils for soft ground improvement. The engineering properties of LWFS were comprehensively investigated based on the previous experimental tests. And three dimensional numerical models which reflect soft ground conditions were adopted to evaluate the applicability of LWFS compared to SCP and DCM. A number of cases were analyzed using a stress-pore pressure coupled model. The results indicated that LWFS method enables to reduce more settlement, lateral flow and heaving than SCP method and enable to reduce more residual settlement than DCM method. Also it was revealed that such effect depends on the properties of LWFS such as unit weight, unconfined compressive strength, deformation modulus and Poisson's ratio.

New approaches to testing and evaluating the impact capability of coal seam with hard roof and/or floor in coal mines

  • Tan, Y.L.;Liu, X.S.;Shen, B.;Ning, J.G.;Gu, Q.H.
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.367-376
    • /
    • 2018
  • Samples composed of coal and rock show different mechanical properties of the pure coal or rock mass. For the same coal seam with different surrounding rocks, the frequency and intensity of rock burst can be significantly different in. First, a method of measuring the strain variation of coal in the coal-rock combined sample was proposed. Second, laboratory tests have been conducted to investigate the influences of rock lithologies, combined forms and coal-rock height ratios on the deformation and failure characteristics of the coal section using this method. Third, a new bursting liability index named combined coal-rock impact energy speed index (CRIES) was proposed. This index considers not only the time effect of energy, but also the influence of surrounding rocks. At last, a new approach considering the influences of roof and/or floor was proposed to evaluate the impact capability of coal seam. Results show that the strength and elastic modulus of coal section increase significantly with the coal-rock height ratio decreasing. In addition, the values of bursting liability indexes of the same coal seam vary greatly when using the new approach. This study not only provides a new approach to measuring the strain of the coal section in coal-rock combined sample, but also improves the evaluation system for evaluating the impact capability of coal.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Influence of post-pouring joint on long-term performance of steel-concrete composite beam

  • Huang, Dunwen;Wei, Jun;Liu, Xiaochun;Zhang, Shizhuo;Chen, Tao
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • The concrete bridge decks are usually precast and in-situ assembled with steel girders with post-pouring joint in the construction practice of super-wide steel-concrete composite beam. But the difference of concrete age between the precast slabs and the post-pouring joint has been not yet considered for the long-term performance analysis of this kind composite beam. A simply supported precast-assembled T-shaped beam was taken as an example to analyze the long-term performance of steel-concrete composite beam with post-pouring joint. Based on the deformation coordination conditions of the old-new concrete deck and steel girder, a theoretical model for the long-term behavior of precast-assembled composite beam is proposed in this paper according to age-adjusted effective modulus method. Then, the feasibility of the proposed model is verified by the available test data from the Gilbert's composite beams. Parametric studies were preformed to evaluate the influences of the cross-sectional area ratio of the post-pouring joint to the whole bridge deck, as well as the difference of concrete age between the precast slabs and the post-pouring joint, on the long-term performance of the composite beam. The results indicate that the traditional method without considering the age difference would seriously underestimate the effect of creep and shrinkage of concrete bridge decks. The concrete age difference between the precast slabs and the post-pouring joint should be demonstrated for the life cycle design and long-term performance analysis of precast-assembled steel-concrete composite beams.

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages (강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.