• Title/Summary/Keyword: Deformation Measurement

Search Result 732, Processing Time 0.026 seconds

The Crystallographic and Magnetic Properties of $Fe_{0.8}Co_{0.18}(BN_{0.02}$ Synthesized by Heat Treatment and Plastic Deformation ($Fe_{0.8}Co_{0.18}(BN_{0.02}$의 열처리 및 소성변형에 의한 결정구조와 자기적 성질)

  • 김정기;한경훈;이상문;정재윤;김예니;신경호
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.225-231
    • /
    • 2000
  • The crystallographic and magnetic properties of the sample F $e_{0.8}$ $Co_{0.18}$(BN)$_{0.02}$ synthesized by microwave arc-melting with the maximum power of 3.5 kW have been studied by the methods of an X-ray diffraction and the measurement of the magnetic hysteresis using the vibrating sample magnetometer at room temperature. The samples were prepared in a form of pellet pressed under the pressure of 9,000 N/c $m^2$, rolled coldly, and treated with the different temperatures. The X-ray diffraction pattern of pelleted sample shows that the crystal structure of the sample is bcc as same as that of Fe with a good uniformity. The X-ray diffraction pattern shows that a residual stress, which exists in the sample, is eliminated by final 90$0^{\circ}C$ annealing. As rolling rate and heat treatment temperature increases, the saturation magnetization and the remanence of the samples increase whereas the coercivity of the samples shows decrease. Also the saturation magnetization and the remanence of the samples were affected by rolling rate and rolling direction than heat treatment temperature, but the coercivity of the samples was affected by rolling rate and direction as well as heat treatment temperature. This means that a domain wall motion is easy due to elimination of a residual stress and an inclusion which exists in the sample by rolling and heat treatment and a local induced-magnetization easy axis was also formed to parallel to the rolling direction due to creation of the like-atom pairs across the slip plane by rolling......

  • PDF

Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method (충격공진법과 초음파속도법을 통한 콘크리트 압축강도 예측의 신뢰성 평가)

  • Lee, Han-Kyul;Lee, Byung-Jae;Oh, Kwang-Chin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.18-24
    • /
    • 2015
  • Non-destructive testing (NDT) methods are widely used in the construction industry to diagnose the defects/strength of the concrete structure. However, it has been reported that the results obtained from NDT are having low reliability. In order to resolve this issue, four kinds of NDT test (ultrasonic velocity measurements by P-wave and S-wave and the impact resonance methods by longitudinal vibration and deformation vibration) were carried out on 180 concrete cylinders made with two kinds of mix proportions. The reliability of the NDT results was analyzed and compared through the measurement of the actual compressive strength of the concrete cylinders. The statistical analysis of the results was revealed that the ultrasonic velocity method by S-wave is having lowest coefficient of variation and also most capable of stable observation. Analytical equations were established to estimate the compressive strength of the concrete from the obtained NDT results by relating the actual compressive strength. Moreover the equation established by the ultrasonic velocity method by S-wave had the highest coefficient of determination. Further studies on the stability of non-destructive testing depending on various mixing conditions will be necessary in the future.

Evaluation of the Bending Behavior of RC beam by Using Color-based Image Processing Method (색상에 기반한 영상분석기법을 이용한 콘크리트 거더의 휨 거동 분석)

  • Woo, Tae-Ryeon;Jung, Chi-Young;Kim, In-Tae;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2020
  • Cracks in reinforced concrete structures are the most common type of damage and are used as important analytical data to understand the fracture behavior characteristics of structures. Currently, there is a problem that most of the crack investigation relies on visual inspection, therefore many researchers have proposed image analysis techniques to improve the problem. In this study, we proposed a crack evaluation method to be applied at an indoor experimental level using image analysis method. The image analysis technique using color is for distinguishing a boundary surface between objects existing in an image, and is a method for separating similar colors into one region based on a predefined color. In this study, to improve the accuracy of image analysis, blue paint was applied to the concrete surface and bending experiments were performed. The image analysis method was able to measure the crack width with superior accuracy compared to the crack diameter, and at the same time, it was also possible to analyze the deflection of the beam. Both the crack and deformation were able to confirm the accuracy similar to the existing measurement method, and it was found that the image analysis method was very excellent in terms of applicability.

Measurement of Thermal Expansion Coefficient of Package Material Using Strain Gages (스트레인 게이지를 이용한 패키지 재료의 열팽창계수 측정)

  • Yang, Hee-Gul;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • It is well known that thermal deformation of electronic packages with Pb-Sn solder and with lead-free solder is significantly affected by material properties consisting the package, as well as those of the solder itself. In this paper, the method for determining coefficient of thermal expansion(CTE) of new material is established by using temperature characteristic of strain gages, and the CTE of molding compound are obtained experimentally. The temperature-dependent CTE of molding compound for Pb-Sn solder and that for lead-free solder are obtained by using strain measurements with well known steel specimen and aluminium specimen as reference specimens, and the CTE's are also measured non-contactly by using moire interferometry. Those results are compared, and the agreement between the two types of strain gage experiment and the moire experiment show the strain gage method used in this paper to be reliable. In the case of the molding compound for Pb-Sn solder, the CTE is measured as approximately $15.8ppm/^{\circ}C$ regardless of the temperature. In the case for the lead-free solder, the CTE is measured as of approximately $9.9ppm/^{\circ}C$ below the temperature of $100^{\circ}C$, and then the CTE is increased sharply depending on the temperature, and reaches to $15.0ppm/^{\circ}C$ at $130^{\circ}C$.

Characterization of Physical Factor of Unsaturated Ground Deformation induced by Rainfall (강우를 고려한 불포화 지반변형의 영향인자 평가)

  • Kim, Man-Il;Jeon, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Geophysical survey for establishing a wide site for the distribution of water content, wetting front infiltration due to the rainfall, and distribution of groundwater level has been performed by using 8round penetration radar (GPR) method, electrical resistivity method, and so on. On the other hand, a narrow area survey was performed to use a permittivity method such as time domain reflectometry, frequency domain reflectometry, and amplitude domain reflectometry methods for estimating volumetric water content, soil density, and concentration of contaminant in surface and subsurface. The permittivity methods establish more corrective physical parameters than different found survey technologies mentioned above. In this study for establishment of infiltration behaviors for wetting front in the unsaturated soil caused by an artificial rainfall, soil physical parameters for volumetric water content, pore water pressure, and pore air pressure were measured by FDR measurement device and pore water pressure meter which are installed in the unsaturated weathered granite soil with different depths. Consequently, the authors were proposed to a new establishment method for analyzing the variations of volumetric water content and wetting front infiltration from the responses of infiltrating pore water in the unsaturated soil.

Effects of Damage Evolution of Eutectic Si Particle and Microporosity to Tensile Property of Al-xSi Alloys (Al-xSi 합금의 인장특성에 미치는 공정 Si 입자의 파단과 미소기공율의 영향)

  • Lee, ChoongDo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.434-444
    • /
    • 2021
  • This study investigated the overall dependence of the tensile properties of Al-Si alloys on the distribution aspect of a eutectic Si particle in terms of defect susceptibility to the effective void area fraction, referring to the sum of pre-existing microvoids and the damage evolution of the Si particle. The network morphology of as-cast Al-xSi (x=2,5,8,11) alloys was modified to a granular type via a T4 treatment, after which a computational topography (CT) analysis and scanning electron microscope (SEM) observations were utilized to evaluate the size and distribution of the microvoids. The CT and SEM analyses indicated that the main cracks grow along local regions that possess the highest porosity level. The local plastic deformation around the microvoids and the distribution aspect of the microvoids induced a practical difference between the iso-volumetric CT measurement and the SEM fractography outcomes. The results demonstrated that the overall dependence of the ultimate tensile strength (UTS) and elongation on the effective void area fraction is more sensitive to the variation of the area fraction of the Si particle in the network morphology than in the granular type; this is due to the sequential damage evolution of the neighboring Si particles in the eutectic Si colony.

Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport (공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.325-337
    • /
    • 2021
  • On the road and rail tunnels, the evacuation pathway and facilities such as smoke-control and fire suppression system are essential in tunnel fire. In the long twin tunnels, the cross-connection tunnel is usually designed to evacuate from the tunnel where the fire broke out to the other tunnel. In twin shield tunnels, the segment lining has to be demolished to construct the cross-connection tunnel. Considering the modern shield TBM is mostly the closed chamber type, the exposure of underground soil induced by removal of steel segment lining is the most danger construction step in the shield tunnel construction. This case study introduces the excavation method using the thrust of large steel pipe and reviews the measured data after the construction. The large steel pipe thrust method for the cross-connection tunnel can stabilize the excavated face with the two mechanisms. Firstly, the soil in front of excavated face is cylindrically pre-supported by the large steel pipe. Secondly, the excavated face is supported by the plugging effect caused by the soil pressed into the steel pipe. It was reviewed that the large steel pipe thrust method in the cross-connection tunnel is enough to secure the construct ability and stability in soil from the measurement results about the deformation and stress of steel pipe.

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning (스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘)

  • Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2021
  • MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.

Unsupervised Non-rigid Registration Network for 3D Brain MR images (3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크)

  • Oh, Donggeon;Kim, Bohyoung;Lee, Jeongjin;Shin, Yeong-Gil
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.64-74
    • /
    • 2019
  • Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.

Prediction of Long-term Behavior of Ground Anchor Based on the Field Monitoring Load Data Analysis (현장 하중계 계측자료 분석을 통한 그라운드 앵커의 장기거동 예측)

  • Park, Seong-yeol;Hwang, Bumsik;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.25-35
    • /
    • 2021
  • Recently, the ground anchor method is commonly applied with nail and rock bolt to secure the stability of slopes and structures in Korea. Among them, permanent anchor which is used for long-term stability should secure bearing capacity and durability during the period of use. However, according to recent studies, phenomenon such as deformation to slope and the reduction of residual tensile load over time have been reported along the long-term behavior of the anchors. These problems of reducing residual tensile load are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs. In this study, we identified the factors that affect the tensile load of permanent anchor from a literature study on the domestic and foreign, and investigated the prior studies that analyzed previously conducted load cell monitoring data. Afterwards, using this as basic data, the load cell measurement data collected at the actual site were analyzed to identify the tensile load reduction status of anchors, and the long-term load reduction characteristics were analyzed. Finally, by aggregating the preceding results, proposed a technique to predict the long-term load reduction characteristics of permanent anchors through short-term data to around 100 days after installation.