• Title/Summary/Keyword: Deformation Interpolation

Search Result 99, Processing Time 0.022 seconds

A Study on the Effective Interpolation Methods to the Fluid-Structure Interaction Analysis for Large-Scale Structure (거대 구조물의 유체-구조 연계 해석을 위한 효과적인 보간기법에 대한 연구)

  • Lee, Ki-Du;Lee, Young-Shin;Kim, Dong-Soo;Lee, Dae-Yearl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.433-441
    • /
    • 2009
  • Generally, the events in nature have multi-disciplinary characteristics. To solve this problems, these days loosely coupled methods are widely applied because of advantage of solvers which are already developed and well proved. Those solvers use different mesh system, so transformation and mapping of data are vital in the field of fluid-structure interaction(FSI). In this paper, the interpolation of deformation which is used globally and compactly supported radial basis functions(RBF), and mapping of force which use principle of virtual work are examined for computing time and accuracy to compare ability with simple 3-D problem. As the results, interpolation scheme of compactly supported radial basis functions are useful to interpolation and mapping for large-scale airplane in FSI with a k-dimensional tree(kd-tree) which is a space-partitioning data structure for organizing points in a k-dimensional space.

Assessment of Image Registration for Pressure-Sensitive Paint (Pressure Sensitive Paint를 이용한 압력장 측정기술의 이미지 등록에 관한 연구)

  • Chang, Young-Ki;Park, Sang-Hyun;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.271-280
    • /
    • 2004
  • Assessment of image registration for Pressure Sensitive Paint (PSP) was performed. A 16 bit camera and LED lamp were used with Uni-FIB paint (ISSI). Because of model displacement and deformation at 'wind-on' condition, a large error of the intensity ratio was induced between 'wind-on' and' wind-off images. To correct the error, many kinds of image registrations were tested. At first, control points were marked on the model surface to find the coefficients of polynomial transform functions between the 'wind-off' 'wind-on' images. The 2nd-order polynomial function was sufficient for representing the model displacement and deformation. An automatic detection scheme was introduced to find the exact coordinates of the control points. The present automatic detection algorithm showed more accurate and user-friendly than the manual detection algorithm. Since the coordinates of transformed pixel were not integer, five interpolation methods were applied to get the exact pixel intensity after transforming the 'wind-on' image. Among these methods, the cubic convolution interpolation scheme gave the best result.

The Effect of Deformation Heat Compensation in the Hot Forging Analysis of SAF 2507 Stainless Steel (SAF 2507 스텐레스강의 열간단조해석에서 가공열 보정의 효과)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Dynamic deformation of metallic materials mostly accompanies substantial amounts of deformation heat. Since the flow stress of deformation is sensitive to temperature, implication of heat due to plastic work is essential to the evaluation of constitutive relations. In this study, a series of compression tests were conducted for SAF 2507 super duplex stainless steel at various temperatures and strain rates. The accumulation of plastic work was calculated through numerical integration and converted into the elevation of temperature. Subsequent logarithmic interpolation deduced isothermal flow surfaces, which were primary input data of finite element analysis. Simple closed die forging process was analyzed and optimized with commercial FEM code applying both raw and calibrated material database. The effect of accounting deformation heat was more noticeable in high-speed forming process.

  • PDF

The Effect of Deformation Heat to the High Strain rate Plastic Flow (고변형율 속도 유동곡선에 미치는 가공열의 영향)

  • 정재영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.119-122
    • /
    • 2000
  • Dynamic deformation of metallic materials mostly accompanies substantial amounts of deformation heat. Since the flow stress of deformation is sensitive to temperature implication of heat due to plastic work is essential to the evaluation of constitutive relations. In this study a series of compression tests were conducted for SAF 2507 super duplex stainless steel and the accumulation of deformation heat was calculated through numerical integration method. Isothermal flow surfaces were deduced from subsequent logarithmic interpolation. Simple closed die forging process was analyzed and optimized with commercial FEM code applying both raw and calibrated material database.

  • PDF

Behaviors of Laminated Composite Folded Structures According to Ratio of Folded Length (곡절 길이비에 따른 복합적층 절판 구조물의 거동)

  • Yoo Yong-Min;Yhim Sung-Soon;Chang Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.223-231
    • /
    • 2006
  • This study deals with behavior characteristics of laminated composite folded structures according to ratio of folded length based on a higher-order shear deformation theory. Well-known mixed finite element method using Lagrangian and Hermite shape interpolation functions is a little complex and have some difficulties applying to a triangular element. However, a higher-order shear deformation theory using only Lagrangian shape interpolation functions avoids those problems. In this paper, a drilling degree of freedom is appended for more accurate analysis and computational simplicity of folded plates. There are ten degrees of freedom per node, and four nodes per element. Journal on folded plates for effects of length variations is not expressed. Many results in this study are carried out according to ratio of folded length. The rational design is possible through analyses of complex and unpredictable laminated composite folded structures.

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.

Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis (대변형 유한요소해석을 위한 요소망 자동 생성기법)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

A Performance Study of First-order Shear Deformable shell Element Based on Loop Subdivision Surface (루프서브디비전 곡면을 이용한 일차전단 변형 쉘요소의 성능에 관한 연구)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.261-268
    • /
    • 2003
  • A first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell is developed. The developed element is general since it includes the effect of transverse shear deformation and has standard six degrees of freedom per node.(three translations and three rotations) The quartic box-spline function is employed as interpolation basis function. Numerical examples for the benchmark problems are analyzed in order to assess the performance of the newly developed subdivision shell element. Both in the uniform and in the distorted mesh configurations.

  • PDF

Three Dimensional Shape Morphing of Triangular Net (삼각망의 3 차원 형상 모핑)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.160-170
    • /
    • 2008
  • Shape morphing is the process of transforming a source shape, through intermediate shapes, into a target shape. Two main problems to be considered in three dimensional shape morphing are vertex correspondence and path interpolation. In this paper, an approach which uses the linear interpolation of the Laplacian coordinates of the source and target meshes is introduced for the determination of more plausible path when two topologically identical shapes are morphed. When two shapes to be morphed are different in shape and topology, a new method which combines shape deformation theory based on Laplacian coordinate and mean value coordinate with distance field theory is proposed for the efficient treatment of vertex correspondence and path interpolation problems. The validity and effectiveness of the suggested method was demonstrated by using it to morph large and complex polygon models including male and female whole body models.

Coupled Analysis of Heat Transfer and Thermoelastoplastic deformation (열전달과 열탄소성변형의 연결해석)

  • 이용기;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.47-54
    • /
    • 1994
  • The study is concerned with the coupled analysis of heat transfer and thermoelastoplastic deformation. The thermoelastoplastic model is very useful for the analysis of residual stress and the analysis of thermal stress as well as the analysis of metal forming. Heat of deformation, phase transformation and contact heat transfer boundary are considered. The contact heat transfer boundary is treated by the interpolation of shape function. The analysis of deformation and the analysis of heat transfer are carried out for the could upsetting and the hot rolling. The computed results are found to be in good agreement with the experimental results.

  • PDF