• Title/Summary/Keyword: Deformation Hardening

Search Result 392, Processing Time 0.033 seconds

An Analytic Study on the Contact Stress and Thermal Stress of Rails (레일의 라체팅에 미치는 접촉응력 및 열응력에 대한 해석적 연구)

  • Goo, Byeong-Choon;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.767-774
    • /
    • 2007
  • Even though a constant repeated load is applied, plastic deformation may cumulate. This kind of behavior is called ratcheting. Ratcheting may lead to cracks and finally to failure of the rail. Usually ratcheting occurs on high rails in curves. Ratcheting is influenced by residual stresses, wheel-rail contact stresses, thermal stresses due to wheel/rail rolling contact, shear strength of the rail, strain hardening behavior, etc. In this study, contact stresses and thermal stresses are examined. It is found their value is considerable compared to the maximum contact pressure.

  • PDF

The bonding mechanism and bond strength of cold pressure welding (엡셋팅에 의한 냉간 압접의 결합 기구와 결합강도)

  • 한인철;김재도
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The bonding mechanism and bond strength were investigated for the cold pressure welding of Al to Al, Cu to Cu and Al to Cu by upsetting. A phenomenon of bonding betweenthe metallic components has been observed by a scanning electron microscope and metallurgical microscope. A modified equation for bond strength with respect to the reduction of height shows reasonably a good agreement with the experimental data. When the values of the hardening factor and threshold deformation for the given materials could be determined, the theoretical bond strength can be calculated.

  • PDF

Plastic Piezoresistivity of a Steel-Alloy Wire (금속합금선의 소성 압전 특성)

  • Zi, Goang-Seup;Jun, Ki-Woo;Kang, Jin-Gu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.657-662
    • /
    • 2007
  • We studied the piezoresistivity of a steel-alloy 'wire when the deformation exceeds the elastic limit. It is that the piezoresistivity of the steel-alloy wire could be modeled by a bilinear function. To predict the plastic piezoresistivity relation, we developed a simple plastic piezoresistivity model based on the classical hardening plasticity. If structural members such as prestressing tendons in concrete structures are concerned, it is a very efficient and simple tool for monitoring.

  • PDF

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.105-106
    • /
    • 2007
  • Microstructure and hardness of metallic powder of Cu was studied after high pressure torsion (HPT) with 10 torsions and high pressure of 6 GPa. The size Cu grain decreases drastically after HPT and reaches the nano size range. During HPT, Cu powder increases hardness and Hall-Petch hardening, due to the decreasing grain size. In this study, effect of HPT on the hardness of Cu powders and consolidation with Nanocrystalline of the work reported here. The results indicated that Cu powder has a beneficial effect on homogeneous deformation, reducing grain size.

  • PDF

Evolution of Orthotropic Anisotropy by Simple Shear Deformation (전단변형에 의한 직교이방성의 변화)

  • 김권희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature (304 스테인리스강의 점소성 특성에 관한 연구)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.101-106
    • /
    • 2007
  • Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

Study on the Hydrofilm Extrusion through Conically Converging Dies (원추형 금형을 통한 박막식 정수압 압출 에 관한 연구)

  • 신동헌;조남선;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 1983
  • The study is concerned with an analysis on the hydrofilm extrusion through conical dies. The upper bound method is adopted for the analysis of metal deformation in connection with hydrodynamic lubrication theory for the lubricant in order to determine the extrusion pressure for some variables such as reduction of area, die cone angle. In the upper bound method, a kinematically admissible velocity field is found by assuming proper streamlines and applying the flow function concept to the region of plastic deformation. The effect of work hardening is incorporated approximately by calculating the strains at the exit of the die. The experiments are carried out with the commercially pure aluminium for some chosen variables at room temperature. It is shown that the theoretical predictions are in good agreement with the experimental observations.

The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation (304 스테인리스강의 열간동적재결정과 미세조직 예측)

  • 권영표;조종래;이성열;이정환
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.573-578
    • /
    • 2001
  • The flow stress of 304 stainless steel during hot forming process were determined by conducting hot compression tests at the range of 1273 K∼1423 K and 0.05 /s∼2.0 /s as these are typical temperature and strain rate in hot forging operation. In this material, Dynamic recrystallization was found to be the major softening mechanism with this conditions as Previous studies. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. In the constitutive model, the effects of strain hardening and dynamic recrystallization were taken into consideration. A finite element method connected to constitutive model was performed to predict the dynamic recrystallization behaviors and also stress-strain curves in hot compression of 304 stainless steel.

  • PDF

A Study on Plastic Strain after Orthogonal Machining using Finite Element Analysis (유한요소법을 이용한 2차원 절삭가공면의 소성스트레인에 관한 연구)

  • 김기환;문상돈;신형곤;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.988-991
    • /
    • 2001
  • Plastically deformed layer influences the mechanical property of the mechanical element such as creep hardening, microscopical crack and stress corrosion destruction. Therefore, the property so called the surface integrity has to be considered, and the machined surface including plastic deformation, distribution of stress has to be conducted quantitatively. This paper explains the orthogonal cutting, and made an orthogonal cutting model using the finite element method, then analyzed cutting power, plastic deformation of workpiece. It introduces the developed subsequent recrystallizations technique for measurement of the plastic strain of machined surface, and verified the technique.

  • PDF

Bifurcation Behaviours of Composite Tubes With Two Different Materials Subjected To Uniform Radial Shrinkage At The External Surface (외주에 균일한 압축을 받는 두꺼운 복합원관의 분지거동)

  • ;;Tomita,Y.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.269-275
    • /
    • 1990
  • Nonaxisymmetric bifurcation behaviours of composite tubes two different materials subjected to uniform radial shrinkage at the external surface have been investigated and compared with those of single tube. The effect of material parameters normalized with respect to those of outer tube upon the bifurcation point and corresponding mode has been clarified. The parameters substantially affect the bifurcation mode with long-wavelength so that the composite tube with low hardening exponent or with high yield stress of inner tube destabilizes the overall deformation of the tube. However surface type bifurcation, short-wavelength mode, shown on the traction-free inner surface is hardly affected by the material parameters. The surface type bifurcation completely depends on the material characteristics of inner tube and the bifurcation point of composite tube almost coincides with the of single tube.