• Title/Summary/Keyword: Deformation Behavior

Search Result 3,350, Processing Time 0.032 seconds

The Effect of Specimen Size on Liquid Segregation in Deformation Behavior of Mushy State Material (고액공존재료의 변형거동에서 재료의 크기가 액상편석에 미치는 영향)

  • 윤성원;서판기;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.94-101
    • /
    • 2003
  • For the optimal net shape forging of S semi-solid materials (SSM), it is important to predict the deformation behavior and defects of materials. Among these defects, liquid segregation is detrimental to produce products with good mechanical properties. Moreover, to apply a numerical method to thixoforging, it is very important to prevent a liquid segregation during forming process. The liquid segregation phenomena in deformation behavior of semi-solid material with variation of test specimen size were studied. The SSM compression tests were performed by dynamic material test system with a furnace. Stress-strain curves and microstructures of SSM were investigated, and Porosities were analyzed to evaluate the effects of experiment parameters on liquid segregation.

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

Finite Element Analysis of Deformation Behavior due to Material Properties during Equal Channel Angular Pressing (등통로각압축(ECAP) 공정에서 재료의 물성에 따른 변형 거동의 유한요소해석)

  • Bae, Gang-Ho;Kwon, Gi-Hwan;Chae, Soo-Won;Kwon, Sook-In;Kim, Myung-Ho;Hwang, Sun-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.187-193
    • /
    • 2002
  • Much research efforts have been made on the equal channel angular pressing (ECAP) which produces ultra-fine grains. Among many process parameters such as channel angles, frictions, die deformations and materials employed, the effects of material properties on the deformation behavior have been investigated. The finite element method has been used to investigate this issue.

A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM (나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구)

  • 윤성원;김정원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Dynamic deformation behavior of aluminum alloys under high strain rate compressive/tensile loading (상용 알루미늄 합금의 고속 인장/압축 변형거동 규명)

  • Lee, O.S.;Kim, G.H.;Kim, M.S.;Hwang, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.268-273
    • /
    • 2000
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, can be used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the aluminum alloys, Al2024-T4, Al6061-T6 and Al7075-T6, under high strain rate compressive and tensile loading are determined using SHPB technique.

  • PDF

Thermal Behavior Analysis of a CNC Lathe (CNC 선반의 열적 거동 해석)

  • 안경기;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.778-783
    • /
    • 1994
  • In operating automated manufacturing system, the long term stability and reliability of NC machine tools become most critical issues. Especially the machining accuracy is dominated by the thermal deformation of machine tools which remains still unsolved and causes troubles in manufacturing operations. Although researches have been carried out on the thermal behavior of a machine tools to minimize or control the thermal deformation of machine tools, the computer models for an analysis of the thermal behacior in machine tools has yet to appear in the open literature. The object of the paper is to present a method of modeling the thermal behavior of a machine tool. The method will make use of finite elements ad be capable of modeling whole machine structures as well as of heat generation processes in the kinematic system components. And temperature distributions and thermal deformations of a CNC lathe are analyzed using the finite element method and are compared with those measured in practice.

  • PDF

Effect of Specimen Geometry on deformation in laser forming of sheet metal (레이저 성형에서 시편의 기하학적 형상에 따른 변형의 양상에 관한 연구)

  • Nadeem, Q.;Seong, W.J.;Na, S.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.22-22
    • /
    • 2009
  • Laser forming is a promising technology in manufacturing, such as in the shipbuilding, automobile, microelectronics, aerospace and other manufacturing industries. This process forms the sheet metal by utilization of laser-induced thermal stresses. Laser forming process has been studied extensively for rectangular shape geometry. This basic study presents the change in deformation behavior of sheet metal during transition from linear to curved geometries and irradiations as well. A series of experiments have been conducted on a wide range of specimen geometries such as quarter-circular and half circular plate. The reasons for this behavior have been analyzed. Results are compared and analyzed by simulations using ABAQUS. Influence of developed stresses on the bending has been investigated. This study provides the more understanding of forming mechanism influenced by geometry effect.

  • PDF

Elevated Temperature Deformation Behavior in an AZ31 Magnesium Alloy

  • Yang Kyoung-Tak;Kim Ho-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1209-1216
    • /
    • 2006
  • An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51 Tm) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (${\sigma}/ G < 4 {\times}10^{-3}$), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (${\sigma}/ G > 4 {\times}10^{-3}$), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level where n=3.5, the present results are in good agreement with the prediction of Fridel model.