• Title/Summary/Keyword: Deform Code

Search Result 60, Processing Time 0.026 seconds

Finite Element Analysis of Precision Cold Forging Process to Improve Material Utilization for Injector Housing (재료이용률 향상을 위한 인젝터 하우징의 정밀냉간단조공정 유한요소해석)

  • Kim, H.M.;Park, Y.B.;Park, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.291-295
    • /
    • 2011
  • The injector housing has two functions, namely, positioning the injector and protecting it from coolant. The conventional manufacturing process of the injector housing by machining has some drawbacks such as considerable loss of material and environmental pollution caused by excessive use of cutting oil. In this paper, precision cold forging is proposed as a new manufacturing process in order to improve these issues. A numerical study was conducted to compute the metal flow, strain, load and other process variables using DEFORM-2D, a finite element analysis(FEA) code for metal forming. Two process methods were investigated and optimal conditions were computed with the FEA code. A prototype was manufactured from the optimal process method and the metal flow and hardness were obtained from the prototype.

Determination of Elastic Recovery for Axi-Symmetric Forged Products (축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

FE Analysis of Hot Forging Process and Microstructure Prediction for Lower Arm Connector (로워암 커넥터 열간단조 공정의 유한요소해석 및 미세조직 예측)

  • Park, Jong-Jin;Hwang, Han-Sub;Lee, Sang-Joo;Hong, Seung-Chan;Lim, Sung-Hwan;Lee, Kyung-Sub;Lee, Kyung-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1243-1250
    • /
    • 2003
  • In the present study, hot forging process for a lower arm connector of an automobile was investigated. An FEM code, DEFORM-3D, was used to analyze the process and the process parameters, such as temperature, strain and strain rate, were obtained. The microstructure of the connector was predicted by applying the Sellars and Yada microstructure evolution models to the process parameters. The method of microstructure prediction used in the present study seems to be effective for the quality assurance of a forged automotive product.

Comparison of Square Section Drawings from Circular Billets through Cassette-Roller-Dies and Hole Die (카세트롤러와 홀다이를 이용한 원형소재에서 사각형 단면 인발 비교)

  • Choi J. I.;Han C. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.208-211
    • /
    • 2001
  • In the drawing from round billet to non-circular section there are two different processes through solid hole die(HD) and the other cassette roller dies(CRD). The CRD process has several cassette type rollers and a billet is able to move through the given gaps between two profiled rollers. The objective of this study is based on the analysis and evaluation of two aforementioned processes using experiments and finite element simulation. In order to simulate the multi-stage drawing process from circular sectioned billet to rounded square section, the finite element analysis is applied to the process using a commercially available DEFORM-3D code. Two types of experimental drawing tests through designed and manufactured dies for pure copper and aluminum alloy are carried out at room temperature. The analysis included comparison of material properties before and after drawing of each process and also provide some useful information by a FEM simulation.

  • PDF

Finite Element Analysis for Precision Cold Forging of Clamp Yoke in Automobile Steering System (자동차 조향장치 클램프 요크의 정밀냉간단조를 위한 유한요소해석)

  • Song D. H.;Park Y. B.;Lim S. J.;Kim M. E.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.220-223
    • /
    • 2001
  • Until now, the clamp yoke of automobile has been largely manufactured by hot forging or burring process. Through the study, the precision cold forging process for clamp yoke has been analysed by using rigid-plastic finite element analysis code, DEFORM-3D. It has shown various results of the FEM simulation. An engineer should select the proper process considering the amount of product.

  • PDF

A Parametric Study for the Upset Forging of Large Ingot (대형 Ingot의 Upset 단조기술에 관한 연구)

  • 박승희;유성만;신상엽
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.101-107
    • /
    • 1999
  • The upset forging stage is the initial work in the forging process. It is used to remove the segregation and cavities of the ingot. Specially in handling large sized ingot, an improper upset forging can cause serious surface tearing. However, there is no detail reference for stable upset forging work. To resolve this difficulty, we studied several factors such as upset forging time, temperature varation of ingot, damage, load and stain rate etc., by using the rigid-plastic finite element approach available in the DEFORM code. Numerical simulation results indicated that: the load value of upset forging works shows severe decreasing trend at a certain point, same as strain rate. Also defects were found to be concentrated around the upper and lower portions of the ingot. With these results, we can estimate a guideline for stable upset forging work.

  • PDF

The Influence of Effective Strain on the Globular Microstructure by SIMA Process for Semi-Solid Forging (반용융 단조를 위한 SIMA 공정에서 유효 변형률이 구상화 조직에 미치는 영향)

  • Park, H.J.;Lee, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.45-51
    • /
    • 1997
  • For semi-solid forging, it is necessarily required to prepare a workpiece with globular microstructure. Among several processes to obtain golbular microstructure, SIMA process is very simple and advantageous with respect to equipment. This paper presents the influence of effective strain on the globularization with aluminium 2024 alloy in cold working stage by SIMA process. Upsetting and forward extrusion are tested for cold working and induction heating is also carried out for reheating to obtain golbular microstructure. Microstructure is observed with an optical microscope. And finite element simulations to obtain effective strain in cold working stage are performed by using commercial finite element code, DEFORM.

  • PDF

A Finite Element Simulation of the V-Belt Pulley Spinning Process (V-벨트 풀리 스피닝 성형공정의 유한요소 시뮬레이션)

  • Kim S. J.;Kim H. R.;Lee T. K.;Kim Y. S.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.81-84
    • /
    • 2001
  • Some trials to simulate the spinning process by which V-belt pulley is usually being manufactured are done in this study. 2D finite element analysis (FEA) for the whole process to produce a mono-typed pulley including preforming, 1st spinning, axial compression and 2nd spinning processes is carried out using the commercial code $DEFORM2D^{TM}$. The sectional shape after each process is compared with that of real product. The deformed shape obtained from the FEA, on the whole, coincides with the experimental result well, but the thickness around the bottom of the V-groove is somewhat different each other.

  • PDF

A Comparative Analysis between 2D and 3D Modeling in the Piercing Process of Lead Frame and Experimental Study (리드프레임 피어싱 공정의 2D와 3D 모델링 비교해석 및 실험적 연구)

  • Bang, H.J.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.288-291
    • /
    • 2006
  • Piercing or blanking process is widely used to manufacture most of lead frame parts, but it is difficult to analyze the real process by the actual shape through progressive dies. In this paper several stages in progressive punching are modeled by 2D and 3D configurations using $DEFORM^{TM}$ 2D/ 3D code. During the progressive stage some state variables and deformed configurations are analyzed in each model. There are three stages in the process, the deformations at each stage are cumulative. The advantages and disadvantages of these two type modeling are discussed and analyzed. The experiments are performed as a working material copper alloy through manufactured die. Computed results in load by two types are compared to experiments.

  • PDF