• Title/Summary/Keyword: Deflection pattern

Search Result 162, Processing Time 0.022 seconds

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

Deformation Characteristics of Reinforced Polymer Concrete Beams (철근보강 폴리마 콘크리트보의 변형특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

Behavior of reinforced concrete segmental hollow core slabs under monotonic and repeated loadings

  • Najm, Ibrahim N.;Daud, Raid A.;Al-Azzawi, Adel A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.269-289
    • /
    • 2019
  • This study investigated experimentally the response of thick reinforced concrete specimens having hollow cores with critical parameters. The investigation includes testing of twelve specimens that are solid and hollow-core slab models. Each specimen consists of two pieces, the piece dimensions are (1.2 m) length, (0.3 m) width and (20 cm) thickness tested under both monotonic and repeated loading. The test program is carried out to study the effects of load type, core diameters, core shape, number of cores, and steel fiber existence. Load versus deflection at mid span, failure modes, and crack patterns were obtained during the test. The test results showed that core shape and core number has remarkable influenced on cracking pattern, ultimate load, and failure mode. Also, when considering repeated loading protocol, the ultimate load capacity, load at yielding, and ductility is reduced.

DESIGN OF A BENDING MAGNET FOR THE KSTAR NBI SYSTEM

  • In, Sang-Ryul;Yoon, Byeong-Joo;Kim, Beom-Yeol
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.793-802
    • /
    • 2006
  • The design concept of a bending magnet to be installed in the KSTAR NBI system is presented. It is the function of a bending magnet that removes unconverted ions from the main beam stream and produces an 8 MW, 120 keV deuterium neutral beam. In order to determine the proper size and shape of the bending magnet, a parametric study on the B-field pattern was carried out by changing the dimensions of the pole face model. In addition, the detailed trajectories of the dominant ion species produced in the beam line were calculated. The electrical and cooling parameters of the coil assembly were also estimated.

Study on Experimental Selection of Parameters in Laser Scattering Mechanism and Analysis of Laser Scattering Patterns in Solar Cell Wafer (레이저 산란 메커니즘 매개변수의 실험적 선정 및 태양전지 웨이퍼의 레이저산란패턴 분석에 관한 연구)

  • Kim, Gyung-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • In this paper, a laser scattering mechanism are designed to detect micro defects such as dent, scratch, pinhole, etc. Its influential parameters are experimentally selected and scattering patterns of micro defects have been analyzed for silicon wafer in solar cell. As a result of experiments, scattered lights are rather increased in wafer surface with micro defects, in comparison to no micro ones. Scattering parameters are optimally selected for obtaining robust and high quality laser scattering images of micro defects. It is shown that scattered light components are linearly increased according to the increase of micro defect sizes, and the depth of micro-defects give a large influence on optical deflection.

Mechanical Properties of Spheroidal Graphite Cast Iron with Duplex Matrix. (2상혼합조직(相混合組織)을 가진 구상흑연주철(球狀黑鉛鑄鐵)의 기계적성질(機械的性質)에 관한 연구(硏究))

  • Yoon, Eui-Pak;Lee, Young-Ho
    • Journal of Korea Foundry Society
    • /
    • v.2 no.2
    • /
    • pp.2-9
    • /
    • 1982
  • This paper is concerned with the improvement of impact and tensile Properties of spheroidal graphite cast iron of the following duplex matricess which were heat treated in the eutectic transformation temperature range (that is, $({\alpha}+{\gamma})$ coexisting range) ; ferrite-martensite, ferrite-bainite and ferrite-pearlite. The absorbed energy and maximum load was measured by recording the load-deflection curve with instrumented Charpy impact testing machine in the temperature range from $+100^{\circ}C$ to $-196^{\circ}C$. It was found the ferrite-bainite duplex matrix showed the highest toughness among the above matrices in the room temperature and the low temperature range. Comparison of this matrix to ferrite-pearlite matrix(that is, as cast) showed a lowering of $27^{\circ}C$ in the nil-ductility transition temperature (NDT) and a lowering of $40^{\circ}C$ in the ductile-brittle transition temperature (TrE), Which seems to result from the finner dimple pattern observed using miorofractography.

  • PDF

CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold (치과용 스케일러 금형의 분말사출성형 CAE 해석설계)

  • Ko Y. B.;Park H. P.;Chung S. T.;Rhee B. O.;Hwang C. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

Modeling of post-tensioned one-way and two-way slabs with unbonded tendons

  • Kim, Uksun;Huang, Yu;Chakrabarti, Pinaki R.;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.587-601
    • /
    • 2014
  • A sophisticated finite element modeling approach is proposed to simulate unbonded post-tensioned concrete slabs. Particularly, finite element contact formulation was employed to simulate the sliding behavior of unbonded tendons. The contact formulation along with other discretizing schemes was selected to assemble the post-tensioned concrete system. Three previously tested unbonded post-tensioned two-way and one-way slabs with different reinforcement configurations and boundary conditions were modeled. Numerical results were compared against experimental data in terms of global pressure-deflection relationship, stiffness degradation, cracking pattern, and stress variation in unbonded tendons. All comparisons indicate a very good agreement between the simulations and experiments. The exercise of model validation showcased the robustness and reliability of the proposed modeling approach applied to numerical simulation of post-tensioned concrete slabs.

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.