• Title/Summary/Keyword: Deflection mode

Search Result 294, Processing Time 0.027 seconds

A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars

  • Unsal, Ismail;Tokgoz, Serkan;Cagatay, Ismail H.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.629-637
    • /
    • 2017
  • Continuous concrete beams are commonly used as structural members in the reinforced concrete constructions. The use of fiber reinforced polymer (FRP) bars provide attractive solutions for these structures particularly for gaining corrosion resistance. This paper presents experimental results of eight two-span continuous concrete beams; two of them reinforced with pure glass fiber reinforced polymer (GFRP) bars and six of them reinforced with combinations of GFRP and steel bars. The continuous beams were tested under monotonically applied loading condition. The experimental load-deflection behavior and failure mode of the continuous beams were examined. In addition, the continuous beams were analyzed with a numerical method to predict the load-deflection curves and to compare them with the experimental results. Results show that there is a good agreement between the experimental and the theoretical load-deflection curves of continuous beams reinforced with pure GFRP bars and combinations of GFRP and steel bars.

Experimental Modal Analysis by Using Hilbert Transform of Signal from Continuous Scanning Laser Vibrometer (연속 스캐닝 레이저 진동계 신호의 Hilbert 변환을 이용한 실험적 모드 해석)

  • Kang, Min-Sig;Chang, Tae-Gyu;Kim, Ho-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.272-277
    • /
    • 2002
  • This paper deals with the vibration deflection shape measurement technique for a sinusoidally excited structure using a continuously scanning laser Doppler vibrometer (CSLV). The CSLV output signal is an amplitude-modulated vibration in which the excitation signal is modulated by the deflection shapes, and thus the deflection shapes of vibration defined along a scan line can be derived by the envelop and the phase information of the CSLV output signal. In this work, a Hilbert transform based approach has been proposed for measurement of deflection shapes. This technique is as simple as the demodulation technique and allows more convenient experimental settings than the Fourier transform approach. The feasibility of the proposed technique is illustrated along with results of experiment.

Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.205-225
    • /
    • 2016
  • In this study the finite element method is utilized to predict the deflection and vibration characteristics of rectangular plates made of saturated porous functionally graded materials (PFGM) within the framework of the third order shear deformation plate theory. Material properties of PFGM plate are supposed to vary continuously along the thickness direction according to the power-law form and the porous plate is assumed of the form where pores are saturated with fluid. Various edge conditions of the plate are analyzed. The governing equations of motion are derived through energy method, using calculus of variations while the finite element model is derived based on the constitutive equation of the porous material. According to the numerical results, it is revealed that the proposed modeling and finite element approach can provide accurate deflection and frequency results of the PFGM plates as compared to the previously published results in literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as porosity volume fraction, material distribution profile, mode number and boundary conditions on the natural frequencies and deflection of the PFGM plates in detail. It is explicitly shown that the deflection and vibration behaviour of porous FGM plates are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FGM plates with porosity phases.

Structural Integrity Assessment of the Internal Structure (원전 기기 내부구조물에 대한 구조건전성평가)

  • Lee, Han-Hee;Choi, Jin-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3497-3500
    • /
    • 2007
  • The internal structure is subjected to dynamic analysis due to the structural integrity. The internal structure shall be installed in the vertical hole call IR1 of reactor core. In order to verify the deflection of the internal structure, the mode and response spectrum analysis of the internal structure was performed. The natural frequency of the internal structure is 11.6 Hz(mode 1 and 2) and deflections of the internal structure are less than values of allowable design (3.2 mm).

  • PDF

AN ALGORITHM FOR COMBINE HARVESTER REEL STAGGER DETERMINATION BASED ON REEL KINEMATICS AND CROP STEM DEFLECTION

  • Oduori, Moses-Frank;Sakai, Jun;Inoue, Eiji
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.704-713
    • /
    • 1993
  • A principle for the determination of reel stagger, based on reel kinematics and crop stem deflection , is proposed. Equation derived theoretically and information obtained empirically are combined to obtain an algorithm for the determination of reel stagger. The algorithm has yet to be evaluated on actual combine harvesters in the harvesting mode.

  • PDF

A Robust Control Approach for Maneuvering a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Lee, Jea-Won;Kim, Hunmo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • In the paper, a robust control mechanism is presented to maneuver a flexible spacecraft with the deflection reduction during large slewing operation at the same time. For deflection reduction and maneuvering of the flexible spacecraft, a control mechanism is developed with the application of stochastic optimal sliding-mode control, a linear tracking model and input shaping technique. A start-coast-stop maneuver is employed as a slewing strategy. It is shown that the control mechanism with he strategic maneuver results in better performance and is more efficient than rigid-body-like maneuver, by applying to the Spacecraft Control Laboratory Experiment (SCOLE) system in a space environment.

  • PDF

Structural behavior of R/C Beam Strengthened with Steel Plate, Carbon Fiber Sheets, and Carbon Fiber Laminate. (강판, 탄소섬유쉬트, 탄소섬유판으로 휨보강된 천근콘크리트보의 구조적 거동)

  • Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.691-696
    • /
    • 1997
  • In recent years, stengthening of beam by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 method of rehabilitation technic are analyzed from the tests. Test parameters are the width of cracks, the method of repair and rehabilitation, the magnitude of existing load. Deflection, failure load, strains of reinforcing bar, strains of sheet and plates are measured during tests. The failure mode and ultimate load are analyzed from these measured data. Test result shows that the width of cracks and the magnitude of existing load do not make any difference of ultimate flexural capacity.

  • PDF

A Study on the Deflection Mode of a Ship's Plate according to the Arc-Length Method (호장증분법에 의한 선체판의 처짐모드에 관한 연구)

  • 고재용;박주신;이돈출;박성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.732-737
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation

  • Kim, Do Kyun;Poh, Bee Yee;Lee, Jia Rong;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.247-259
    • /
    • 2018
  • In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) concept for plate element which is a function of plate slenderness ratio (${\beta}$) and coefficient of initial deflection. In case of initial deflection, buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good agreement ($R^2=0.99$) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting the ultimate strength performance of plate element subjected to longitudinal compression.

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying;Qiu, Wan-Chao;Ou, Zhuo-Cheng;Duan, Zhuo-Ping;Huang, Feng-Lei
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.801-814
    • /
    • 2012
  • The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.