• Title/Summary/Keyword: Deflection characteristics

Search Result 638, Processing Time 0.024 seconds

Load Characteristics and Sensitivity Analysis for an Automotive Clutch Diaphragm Spring (자동차 클러치 다이어프램 스프링 하중 특성 및 민감도 해석)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • An analytical solution for deflection-load characteristics of a conical disk spring used especially in the automotive manual transmission clutch applications is proposed in order to take into account the effects of friction and large deformation. The conical disk spring, or the diaphragm spring, has a hinge support, an application point of release load at the tip of the fingers and an application point of clamp load near but inside the outer perimeter of the conical disk spring. The friction coefficient is assumed to be a constant regardless of the speed of deflection and the magnitude of loads. Comparison with experimental shows a good agreement with the analytical prediction. Also, the sensitivity of the clamp load due to variations in the geometrical parameters of the conical disk spring is calculated and discussed.

Dynamic Characteristics of Cantilever Pipe Conveying Fluid with the Moving Masses (이동질량을 가진 유체유동 외팔 파이프극 동특성)

  • 윤한익;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.550-556
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid. the moving mass upon it and an attacked tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe haute been studied on the dynamic behavior of a cantilever pipe by numerical method. As the velocity of the moving mass increases, the deflection of cantilever pipe conveying fluid is decreased. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. The deflection of the cantilever pipe conveying fluid is increased by moving masses. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced due to the deflection of pipe tilth the effect of moving mass and gravity.

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.772-778
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2%. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45Hz~3.34Hz and damping ratio revealed for 1.26~2.84%. Maximum verticality deflection(4.86mm) was sufficiently satisfied the design criteria(30.1mm), but in the case of verticality acceleration's respond, design criteria BRDM(Bridge Design Manual) & CTRL presentation derive rail limit value 0.35g be more than value 6 time recorded, maximum was measured 0.49g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.

  • PDF

A Study on the Flame Propagation Characteristics for LPG and Gasoline fuels by Using Laser Deflection Method (레이저 굴절법을 이용한 LPG와 가솔린 연료의 화염전파 특성에 관한 연구)

  • Lee, Kihyung;Lee, Changsik;Kang, Kernyong;Kang, Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1608-1614
    • /
    • 2000
  • For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different intial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0 and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher.

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1306-1314
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2 %. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45 Hz~3.34 Hz and damping ratio revealed for 1.26~2.84 %. Maximum verticality deflection(4.86 mm) was sufficiently satisfied the design criteria(30.1 mm), but in the case of verticality acceleration's respond, design criteria BRDM(bridge design manual) & CTRL presentation derive rail limit value 0.35 g be more than value 6 time recorded, maximum was measured 0.49 g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.

Long-Term Characteristics on Flexural Performance of Steel Fiber Reinforced Concrete Continuous Slab (강섬유보강콘크리트 연속슬래브 휨성능의 장기거동 특성)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.163-170
    • /
    • 2019
  • In spite of various advantages, steel fiber reinforced concrete is still limited in its use due to the insufficient research results on the structural performance and design criteria. This study evaluated the long-term behavior of the steel fiber reinforced concrete slabs by long-term loading experiments based on the short-term load bearing capacity of steel fiber reinforced concrete slabs obtained from previous studies. In this study, long-term loading experiments were carried out on Total four 2-span continuous slab specimens were tested for examining the long-term behavior of steel fiber reinforced concrete members. Long-term behavior characteristics of members were evaluated by measuring the long-term deflection, drying shrinkage, the number and width of cracks. Experimental results showed that the instant deflection of the steel fiber reinforced concrete slab is about 50% of the normal reinforced concrete slab. And, it was analyzed that the long-term deflection of the specimen using steel fiber reinforced concrete was about 10~20% lower than that of normal concrete by the long-term deflection over 100 days. In addition, the slab specimen using steel fiber reinforced concrete was evaluated to have just 70% of the number and width of cracks compared with normal concrete specimens.

A study on the optimal value for the towers height of the ropeway (가공색도의 지주높이 최적치에 관한 연구)

  • 최선호;박용수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.381-388
    • /
    • 1988
  • The heights of the towers of a ropeway are theoretically derived and the result is experimentally verified. The accuracy in the equation of deflection angle obtained by applying the characteristics of catenary curve was confirmed through experiment. By applying these equations the optimal values of the tower heights could be obtained because the deflection angles trade off each other. The deflection angle was measured by using the curve fitting technique.

Experimental Verification on the Characteristics of Cracking and Deflection Behavior of Reinforced Concrete Beams (철근콘크리트 보의 균열 및 처짐 거동 특성에 관한 실험적 고찰)

  • Kim, Sang-Sik;Lee, Jin-Seop;Jang, Su-Youn;Lee, Seung-Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.110-113
    • /
    • 2006
  • As various loads are applied to a reinforced concrete beam, cracks may occur by the influence of shear and bending moments. These cracks propagate as the applied loads are increased. In addition, the deflection of the reinforced beam is also increased at the same time. Even though it is commonly accepted that the cracking and the deflection of a reinforced concrete beam are very closely related, many studies have not been conducted to provide basic data and to develop the relationship between them. In this study total seventeen specimens subjected to bending were tested with different concrete strength, coverage, amount of steel and de-bonding bars. The effects of these parameters on the relationship between cracking and deflection were carefully checked and analyzed.

  • PDF

Compensation for Machining Error included by Tool Deflection Using High-Speed Camera (고속카메라를 이용한 절삭공구변형의 보상에 관한 연구)

  • Bae, J.S.;Kim, G.H.;Yoon, G.S.;Seo, T.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF