• Title/Summary/Keyword: Defense-in-Depth

Search Result 185, Processing Time 0.029 seconds

Quantitative Analysis on Chemisorption of NaDDTC as Organic Compound containing Sulfur for Cu-Ni Alloy (황을 포함한 유기화합물인 NaDDTC의 CuNi합금에 대한 화학적 흡착에 관한 정량적 분석)

  • Jung, Gilbong;Kim, Dongyung;Jang, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.548-557
    • /
    • 2015
  • This paper is results on Chemisorption of organic compound for the sea water fire fighting line of naval vessels. The quantitative analysis of Chemisorption has been investigated in seawater after immersion in 0.1 % of NaDDTC solutions for 43 hours. The morphology and topography were investigated by FE-SEM and AFM. The chemical elements were analyzed by SEM-EDS, XPS and the depth of chemical elements was measured by depth profiles. The effect of NaDDTC comes from Chemisorption between Copper and Sulfur of NaDDTC. As a result, test results showed that sulfur is helpful to protect a corrosion of seawater line.

Design of an Intrusion Detection System for Defense in Depth (계층적 방어를 위한 침입탐지 시스템 설계)

  • Koo, Min-Jeong;Han, Woo-Chul;Chang, Young-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.525-526
    • /
    • 2010
  • 2000년 대규모 DDoS 공격이래, 2009년 7월 7일 국가주요정부기관 및 인터넷 포털, 금융권 등의 웹사이트 대상으로 1차, 2차, 3차로 나누어 대규모 사이버 공격이 발생하였다. 지속적으로 발전되는 행태를 보이고 DDoS 공격에 대해 본 논문에서는 계층적인 침입탐지시스템을 설계하였다. 네트워크 패킷을 분석하기 위해 e-Watch, NetworkMiner등의 패킷, 프로토콜 분석도구를 이용하여 TCP/IP의 Layer별 공격을 분석한 후 패킷의 유입량, 로그정보, 접속정보, Port, Address 정보를 분석하고 계층침입에 대한 방어를 수행하도록 설계하였다. 본 논문은 DDoS(Distributed Denial of Service)에 대한 패킷 전송에 대해 계층적인 방어를 통해 보다 안정적인 패킷수신이 이루어진다.

  • PDF

Prediction of Hydrodynamic Coefficients for Underwater Vehicle Using Rotating Arm Test (강제선회시험을 이용한 수중운동체의 유체력 미계수 추정)

  • Jeong, Jae-Hun;Han, Ji-Hun;Ok, Jihun;Kim, Hyeong-Dong;Kim, Dong-Hun;Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • In this study, hydrodynamic coefficients were obtained from a Rotating Arm (RA) test, which is one of the captive model tests used to provide accurate coefficients in the control motion equation of an underwater vehicle. The RA test was carried out at the RA facility of ADD (Agency for Defense Development), and the forces and moments acting on the underwater vehicle were measured using a six-axis waterproof gage. A multiple regression analysis was used in the analysis of the measured data. The experimental results were also verified by comparison with the theoretical values of the previous linear coefficients. In addition, the stability indices in the horizontal plane were calculated using the linear and nonlinear coefficients, and the dynamic stability of the underwater vehicle was estimated to have a good dynamic performance with a depth ratio of 6.0.

LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data (기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Kim, Young-Won;Byeon, Seong-Hyeon;Lee, Soo-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.603-614
    • /
    • 2021
  • Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.

Simulation and Experiment of Distorted LFM Signals in Shallow Water Environment

  • Na, Young-Nam;Jurng, Mun-Sub;Shim, Tae-Bo;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.16-25
    • /
    • 1998
  • This paper attempts to examine the characteristics of underwater acoustic signals distorted in shallow water environments. Time signals are simulated using an acoustic model that employs the Fourier synthesis scheme. An acoustic experiment was conducted in the shallow sea near Pohang, Korea, where water depth is about 60m. The environment in the simulation is set up so that it approximates the experimental condition, which can be regarded as range-independent. The signal is LFM(linar frequency modulated) type centered on one of the four frequencies 200, 400, 600 and 800Hz, each being swept up or down with the bandwidth of 100Hz. To analyze the signal characteristics, the study introduces a spectrum estimation scheme, pseudo Wigner-Ville distribution (PWVD). The simulated and measured signals suffer great interference by the interaction of neighboring rays. Although there are constructive or destructive interference, the signals keep LFM characteristics well. This is thought that only a few dominant rays of small loss contribute to the receive signals in a shallow water environment.

  • PDF

The Effects of Forming Depth and Feed Rate on Forming Force of Flow Forming (유동성형의 성형력에 미치는 가공깊이와 이송속도의 영향)

  • Nam K. O.;Yeom S. H.;Kang S. J.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.251-254
    • /
    • 2005
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming load and enhanced mechanical and surface quality for a good finished part compared with other method formed parts. So flow forming technique is used widely in industrial production. Especially spinning and flow farming techniques an used frequently in automotive, aerial, defense industry. In this paper, FEM analysis of three-roller backward flow forming of a workpiece is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forces on several forming depth and feed rate conditions are obtained. The phenomena such as bell mouth, build up and bulging during simulation are observed as well.

  • PDF

A Study on Trainer and Cover Recognition Algorithm for Posture Recognition of Virtual Shooting Trainer (가상 사격 훈련자 자세인식을 위한 훈련자와 엄폐물 인식 알고리즘 연구)

  • Kim, Hyung-O;Hong, ChangHo;Cho, Sung Ho;Park, Youster
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.298-300
    • /
    • 2021
  • The Ministry of National Defense decided to build a realistic combat simulation training system based on virtual reality and augmented reality in accordance with the expansion of the scientific training system of "Defense Reform 2.0". The realistic combat simulation training system should be able to maximize the tension and training effect as in actual combat through engagement between trainers. In addition, it should be possible to increase the effectiveness of survival training at the same time as shooting training similar to actual combat through cover training. Previous studies are suitable techniques to improve the shooting precision of the trainee, but it is difficult to practice bilateral engagement like in actual combat, and it is particularly insufficient for combat shooting training using cover. Therefore, in this paper, we propose a S/W algorithm for generating a virtual avatar by recognizing the shooting posture of the opponent on the screen of the virtual shooting trainer. This S/W algorithm can recognize the trainer and the cover based on the depth information acquired through the depth sensor and estimate the trainer's posture.

  • PDF

An Evaluation Model for Analyzing the Overlay Error of Computer-generated Holograms

  • Gan, Zihao;Peng, Xiaoqiang;Hong, Huajie
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.277-285
    • /
    • 2020
  • Computer-generated holograms (CGH) are the core devices to solve the problem of freeform surface measurement. In view of the overlay error introduced in the manufacturing process of CGH, this paper proposes an evaluation model for analyzing the overlay error of CGH. The detection method of extracting CGH profile information by an ultra-depth of field micro-measurement system is presented. Furthermore, based on the detection method and technical scheme, the effect of overlay error on the wavefront accuracy of CGH can be evaluated.