• Title/Summary/Keyword: Defense Technology Planning

Search Result 147, Processing Time 0.028 seconds

Study on the Priority of Defense R&D Project for Verifying Weapon Systems Requirement (전력소요 통합검증을 위한 국방 R&D사업 우선순위 선정에 관한 연구)

  • Lee, Ho-Jin;Ahn, Nam-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.153-159
    • /
    • 2018
  • In recent years, the development of weapons systems in the field of defense research and development has become increasingly large, complex, and long-term, and so have budgets and the time spans involved. In order to improve this, the Weapon Systems Requirement Verification Committee, which benchmarked the preliminary feasibility of the private sector, was established to verify the appropriateness of requirements, and the necessity and priority of the projects. This research proposes a methodology for analyzing and prioritizing proposed weapons systems for effective and strategic allocation of defense budget funding. First, the evaluation factors that can be used in the defense sector were assessed by analyzing the related fields. We set the weighting of items by using the analytical hierarchy process for technical risk assessment and technical profitability evaluation. After that, we applied the methodology to 32 weapons systems and analyzed the results. In conclusion, through this study, it was possible to analyze profitability dimensions overlooked in the existing methodology.

Hybrid Operational Concept with Chemical Detection UAV and Stand-off Chemical Detector for Toxic Chemical Cloud Detection (화학오염운 탐지를 위한 접촉식 화학탐지기를 탑재한 무인기와 원거리 화학탐지기의 복합 운용개념 고찰)

  • Lee, Myeongjae;Chong, Eugene;Jeong, Young-Su;Lee, Jae-Hwan;Nam, Hyunwoo;Park, Myung-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.302-309
    • /
    • 2020
  • Early-detection and monitoring of toxic chemical gas cloud with chemical detector is essential for reducing the number of casualties. Conventional method for chemical detection and reconnaissance has the limitation in approaching to chemically contaminated site and prompt understanding for the situation. Stand-off detector can detect and identify the chemical gas at a long distance but it cannot know exact distance and position. Chemical detection UAV is an emerging platform for its high mobility and operation safety. In this study, we have conducted chemical gas cloud detection with the stand-off chemical detector and the chemical detection UAV. DMMP vapor was generated in the area where the cloud can be detected through the field of view(FOV) of stand-off chemical detector. Monitoring the vapor cloud with standoff detector, the chemical detection UAV moved back and forth at the area DMMP vapor being generated to detect the chemical contamination. The hybrid detection system with standoff cloud detection and point detection by chemical sensors with UAV seems to be very efficient as a new concept of chemical detection.

Global Competitiveness Analysis of National Defense Industry - DEA and Malmquist Production Analysis- (국내 방위산업 글로벌 경쟁력 분석 -효율성 및 생산성 중심으로-)

  • Kim, Joon-Young;Hong, Jong-Yi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8378-8385
    • /
    • 2015
  • The interest of global competitiveness for national defense industry. This study analyzes the efficiency and productivity of 45 defense companies in each continent(North America, Europe and Northeast Asia, etc.), including Korea defense companies. It is analyzed by Data Envelopment Analysis(DEA) and Malmquist Productivity Analysis over the period 2009-2013(5 years). The sample companies has been selected on the data avilability among the SIPRI Top 100 arms-producing and military services companies in the world(excluding China) in 2013. It extracts the relative efficiency and Malmquist productivity index of companies and each continent. Based on the DEA and MPI results, this paper estimates the global competitiveness and position of national defense industry and extracts implication. This study can be utilized for improvement of national defense industry and policy planning for cultivating the national defense companies.

A Comparative Study on the Characteristics of the Core Technology and Future New Technology of the Ground Unmanned System (국방 지상무인체계의 핵심기술과 미래 신기술 특성 비교 연구)

  • Kim, Doe-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.291-297
    • /
    • 2019
  • The world's leading industrialized nations are improving their national science and technology capacity through the continuous expansion of national R&D investment and the improvement of performance in accordance with the trend of the fourth industrial revolution. As rapid technological development following technological convergence necessitates a preemptive response to a new paradigm, the importance of securing high technology that affects the national competitiveness is increasing day by day. Core technologies and future new technologies that affect national competitiveness can be seen as a measure to upgrade the nation's innovative capabilities. In particular, the core technologies and future new technologies to prepare for changes in a security environment and future battlefields are very important in the defense sector that develops weapons systems. In the defense sector, the core technologies based on the military weapons systems are identified, and future new technologies that use the best technologies of the private sector for national defense, not on the needs of develops weapons systems, are derived. This study examined the characteristics of core technology and future new technology of defense ground unmanned systems, conducted a comparative study through empirical analysis, and concluded that strategic technology planning and research and development are needed according to the core technology and future new technology characteristics.

A Study on the Architecture Design and Implementation for High Speed Autonomous Vehicle in Rough Terrain (야지환경에서 고속 무인자율차량의 아키텍처 설계 및 구현에 관한 연구)

  • Lee, Tae Hyung;Kim, Jun;Choi, Ji Hoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Autonomous vehicles operated in the rough terrain environment must satisfy various technical requirements in order to improve the speed. Therefore, in order to design and implement a technical architecture that satisfies the requirements for speed improvement of autonomous vehicles, it is necessary to consider the overall technology of hardware and software to be mounted. In this study, the technical architecture of the autonomous vehicle operating in the rough terrain environment is presented. In order to realize high speed driving in pavement driving environment and other environment, it should be designed to improve the fast and accurate recognition performance and collect high quality database. and it should be determined the correct running speed from the running ability analysis and the frictional force estimation on the running road. We also improved synchronization performance by providing precise navigation information(time) to each hardware and software.

Evaluation of Hydrodynamic Performances for New Amphibious Assault Vehicles by Using CFD (CFD를 이용한 차기 상륙돌격장갑차의 유체역학적 성능 평가)

  • Jang, Jaeyeong;Kim, Keunhyong;Lee, Jongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • The Republic of Korea Marine Corps is planning to develop a new amphibious assault vehicle which is able to operate with higher water speed than current KAAV. In order to achieve a higher water speed for hydrodynamically bulff-body vehicles, it is essential to develop drag reduction strategies. In this paper, resistance characteristics including trim angles of amphibious assault vehicles with several appendage designs are investigated using a commercial CFD code, STAR-CCM+. The computed results are compared with experimental data conducted at the towing tank with 1:4.5 scaled model and show good correlation. Comparing with the results of bare hull, 3.4 % of hydrodynamic drag and 52 % of trim angle are reduced by the application of double angled bow flap and a hydrofoil attached at the transom.

An Optimal Mission Assignment Model for Determining a Minimum Required Level of Nuclear-powered Submarines (원자력 추진 잠수함 최소 소요량 결정을 위한 임무 할당 최적화 모델)

  • Lee, Dong-Gyun;Park, Seung-Joo;Lee, Jinho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.235-245
    • /
    • 2018
  • This study first analyzes the necessity and the validity of procuring nuclear-powered submarines, and presents an optimization model as an integer program to determine a minimum required level of them. For an optimization model, we characterize a submarine's mission, ability and availability, and apply these to the model by constraints. Then, we assign the submarines available currently and the nuclear-powered submarines, that will be newly introduced, to the predefined missions over the planning time periods in a way that the number of nuclear-powered submarines be minimized. Randomly generated missions are employed to solve a mission assignment problem, and the results show that our integer programming model provides an optimal solution as designed, and this can provide a guideline for other weapon system procurement processes.

A study on the Improvement Direction of Design Phase Entry Criteria Review for Naval Surface Ships & Onboard Weapon Systems R&D Project (함정 및 함정탑재 무기체계 연구개발사업의 설계단계 진입조건 검토 개선 방향)

  • Kwang Yong Hwang;Dong Myung Seol;Bong Wan Choi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • In principle, R&D of general weapons systems are led by companies or government-funded organizations. In terms of project execution, the defense R&D planning system was reorganized to conduct SE-based project management by integrating the naval ship project execution procedure into the general weapon system R&D procedure. The development progress was confirmed according to the guide for SE application of DAPA, and a technical review meeting was proposed to enter into the each next phase in the R&D process. This paper focuses on improvement for technical review in terms of technical management based on system engineering for R&D mounted weapon systems and the naval surface ship project in preliminary design and detailed design. So, the improvement direction for reviewing the entry criteria for the R&D weapons systems of the naval ship and mounted weapons is proposed.

The study of Defense Artificial Intelligence and Block-chain Convergence (국방분야 인공지능과 블록체인 융합방안 연구)

  • Kim, Seyong;Kwon, Hyukjin;Choi, Minwoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.81-90
    • /
    • 2020
  • The purpose of this study is to study how to apply block-chain technology to prevent data forgery and alteration in the defense sector of AI(Artificial intelligence). AI is a technology for predicting big data by clustering or classifying it by applying various machine learning methodologies, and military powers including the U.S. have reached the completion stage of technology. If data-based AI's data forgery and modulation occurs, the processing process of the data, even if it is perfect, could be the biggest enemy risk factor, and the falsification and modification of the data can be too easy in the form of hacking. Unexpected attacks could occur if data used by weaponized AI is hacked and manipulated by North Korea. Therefore, a technology that prevents data from being falsified and altered is essential for the use of AI. It is expected that data forgery prevention will solve the problem by applying block-chain, a technology that does not damage data, unless more than half of the connected computers agree, even if a single computer is hacked by a distributed storage of encrypted data as a function of seawater.

Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System (이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략)

  • CHO JUNG-HONG;KIM JUNG-HAE;KIM JEA-SOO;LIM JUN-SEOK;KIM SEONG-IL;KIM YOUNG-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.