• Title/Summary/Keyword: Defense Modeling and Simulation

Search Result 251, Processing Time 0.021 seconds

A Study of the UML modeling and simulation for an analysis and design of the reconnaissance UAV system (정찰용 무인기 체계 분석/설계를 위한 UML 모델링 및 시뮬레이션 연구)

  • Kim, Cheong-Young;Park, Young-Keun;Lee, Jun-Kyu;Kim, Myun-Yeol;Reu, Tae-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1112-1120
    • /
    • 2008
  • The real-time distributed simulation at the present age concentrates on the construction of a system development environment in order to accomplish a synthetic battlefield environment connected with Live-Virtual-Constructive simulation and to realize the Simulation Based Acquisition which supports the life cycle of weapon system. Accordingly this paper describes the development environment of the UML modeling and simulation which integrates the system analysis and design methods performed during the conceptual design phase of the reconnaissance UAV system development. An integrated framework linked with the UML simulation and X-plane visualization is suggested to efficiently perform the system analysis and design, and finally the implementation contents, the analysis of experiment results and concluding remarks are described.

Numerical Study on Variation of Penetration Performance into Concrete with Reinforcement Modeling Methods (철근 모사 방법에 따른 콘크리트 관통성능 변화에 관한 수치적 연구)

  • Baek, Seung-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.97-105
    • /
    • 2016
  • This paper discusses the effect of numerical reinforcement modeling methods on the penetration performance of a penetrator into a concrete target. AUTODYN-3D has been used to conduct the numerical penetration analyses. In order to validate the computational approach, experimental data of Hanchak have been compared to a computation result and a reasonably good agreement could be obtained. The strength and the diameter of a reinforcement have been changed to find out the effect of reinforcement modeling methods on the penetration performance. The impact locations and velocities of a penetrator are also changed to investigate the effect of reinforcement modeling methods. Residual velocities of a penetrator are quantitatively compared in detail for the evaluation of reinforcement modeling effects on the penetration performance.

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Analysis of Experience Knowledge of Shooting Simulation for Training Using the Text Mining and Network Analysis (Text Mining과 네트워크 분석을 활용한 교육훈련용 모의사격 시뮬레이션 경험지식 분석)

  • Kim, Sungkyu;Son, Changho;Kim, Jongman;Chung, Sehkyu;Park, Jaehyun;Jeon, Jeonghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.700-707
    • /
    • 2017
  • Recently, the military need more various education and training because of the increasing necessity of various operation. But the education and training of the military has the various difficulties such as the limitations of time, space and finance etc. In order to overcome the difficulties, the military use Defense Modeling and Simulation(DM&S). Although the participants in training has the empirical knowledge from education and training based on the simulation, the empirical knowledge is not shared because of particular characteristics of military such as security and the change of official. This situation obstructs the improving effectiveness of education and training. The purpose of this research is the systematizing and analysing the empirical knowledge using text mining and network analysis to assist the sharing of empirical knowledge. For analysing texts or documents as the empirical knowledge, we select the text mining and network analysis. We expect our research will improve the effectiveness of education and training based on simulation of DM&S.

A Study on Generating Meta-Model to Calculate Weapon Effectiveness Index for a Direct Fire Weapon System (직사화기 무기체계의 무기효과지수 계산을 위한 메타모델 생성방법 연구)

  • Rhie, Ye Lim;Lee, Sangjin;Oh, Hyun-Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Defense M&S(Modeling & Simulation) requires weapon effectiveness index which indicates Ph(Probability of hit) and Pk(Probability of kill) values on various impact and environmental conditions. The index is usually produced by JMEM(Joint Munition Effectiveness Manual) development process, which calculates Pk based on the impact condition and circular error probable. This approach requires experts to manually adjust the index to consider the environmental factors such as terrain, atmosphere, and obstacles. To reduce expert's involvement, this paper proposes a meta-model based method to produce weapon effectiveness index. The method considers the effects of environmental factors during calculating a munition's trajectory by utilizing high-resolution weapon system models. Based on the result of Monte-Carlo simulation, logistic regression model and Gaussian Process Regression(GPR) model is respectively developed to predict Ph and Pk values of unobserved conditions. The suggested method will help M&S users to produce weapon effectiveness index more efficiently.

The Research for the Framework of CMMS Method for Improving the Reusability and Interoperability in defense M&S (국방 M&S의 재사용성과 상호운영성 향상을 위한 임무공간 개념모델(CMMS) 적용방안)

  • Bae, Young-Min;Lee, Jungi-Man;Lee, Young-Hoon;Pyun, Jae-Jung;Cho, Nae-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.140-147
    • /
    • 2010
  • The defense M&S (Modeling and Simulation) techniques are being used by the ROK Army for developing the efficiency and economics of national defense at operational level. But the problem we have found is the lack of interoperability and reusability in defense M&S. CMMS (Conceptual Model of the Mission Space) method have been used by militaries of some advanced countries for the purpose to solve these problems. Therefore, we have adapted the same approach in this paper as adapted by advanced countries military forces as named it as K-CMMS(Korean-Conceptual Model of the Mission Space). Considering the special ROK factors, we have suggested the framework of K-CMMS. We have tried to search for improving the reusability and interoperability in defense M&S.

Life Cycle Cost Estimation for Jangbogo-II Submarines based on Modeling and Simulation Methodologies (M&S기법을 활용한 장보고 II급 잠수함 수명주기비용 추정)

  • Ahn, Jae-Kyoung;Choi, Bong-Wan;Lee, Yong-Kyu
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2010
  • With the development of science and technology, modern submarines are equipped with high technology devices and multi-functioned precise armaments, consequently, acquisition cost as well as maintenance cost of the submarines are getting higher and higher. However, tight defense budget forces navy to significantly reduce military operating and maintenance costs. In this study, the maintenance and operating costs of submarine Jangbogo-II are estimated through M&S (Modeling and simulation) methodologies in order to reasonably and consistently work out the requirement verification system of Jangbogo-II. The maintenance and operating costs of Jangbogo-II along the next 25 years are estimated as 312.65 billion won via engineering analysis methods while 312.69 billion won from PRICE Model, which shows only 0.04 billion won differences as a whole. This study is expected to be able to provide meaningful decision making data for not only short and/or mid term operating planning but military budgeting.

Development and Analysis of Real-time Distributed Air Defense System Simulator Using a Software Framework (소프트웨어 프레임워크를 이용한 대공유도무기 실시간 분산 시뮬레이터 개발 및 분석)

  • Cho, Byung-Gyu;Youn, Cheong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.58-67
    • /
    • 2005
  • To overcome limitations of test scope, schedule and cost, M&S(Modeling & Simulation) technique has been applied for T&E(Test and Evaluation) of the state-of-art weapon systems. This paper proposes an air defense simulation software framework to reduce both redundancy an[1 programming errors in system simulator. The proposed framework consists of a 'model' and a 'middleware' The 'middleware' is a reliable communication service layer that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP, UDP and etc. The main role of 'model' is to schedule and to run the real-time distributed simulation. The proposed framework has been applied to M-SAM(Middle range Surface to Air Missile) system simulator. The proposed framework's scheduling and communication performance results are satisfactory and were measured by hardwired NTP(Network Timer Protocol) time-stamp with GPS(Global Positioning System) timer for better precision.

M&S Verification, Validation and Accreditation Research Direction Considering the Characteristics of Defense M&S (국방 M&S의 특징 분석과 이를 통한 VV&A 방향)

  • Kim, Junghoon;Jeong, Seungmin;Hwang, Illhoe;Cho, Hyunju;Kim, Daeyoung;Jang, Young Jae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.486-497
    • /
    • 2013
  • In this paper, we first present an in-depth survey of the research on Verification, Validation and Accreditation (VV&A) applied in various areas. Then we introduce the characteristics of the military and defense Modeling and Simulation (M&S) and propose the direction of method for VV&A with the identified characteristics. The M&S has been widely used in many different applications in the military and defense area including training, analysis, and acquisition. Methods and processes of VV&A have been proposed by researchers and M&S practitioners to guarantee the correctness of the M&S. The idea of applying the formal credibility assessment in VV&A is originated from the Software Engineering Reliability Test and Systems Engineering Development Process. However, the current VV&A techniques and processes proposed in the research community have not utilized the military-and-defense specific characteristics. We identify the characteristics and issues that can be found in the military and defense M&S. Then propose the direction of techniques and methods for VV&A considering the characteristics and issues. Also, possible research direction on the development of VV&A is proposed.

Study to Design of Side-scan Sonar for Unmanned Surface Vehicle (무인수상정 탑재 측면주사소나 설계를 위한 모델링 연구)

  • Bae, Ho Seuk;Kim, Woo-Shik;Kim, Jung Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In order to successfully detect and identify underwater targets located on the seabed, unmanned surface vehicles (USVs) typically acquire acoustic signals with a side-scan sonar device and reconstruct information about the target from the processed images. As the quality of the side-scan sonar images acquired by USVs depends on the environment and operating parameters, using modeling and simulation techniques to design side-scan sonar devices can help optimize the reconstruction of the sonar images. In this work, we study a side-scan sonar design for use in USVs, that takes the movement of the platform into account. First, we constructed a simulated seabed environment with underwater targets, and specified the maneuvering conditions and sonar systems. We then generated the acoustic signals from the simulated environment using the sonar equation. Finally, we successfully imaged the simulated seabed environment using simple signal processing. Our results can be used to derive USV side-scan sonar design parameters, predict the resulting sonar images in various conditions, and as a basis for determining the optimal sonar parameters of the system.