• Title/Summary/Keyword: Defense Modeling and Simulation

Search Result 251, Processing Time 0.024 seconds

Study of Development for Distributed Battlefield Simulation Environment : One-to-One Single Unit Engagement Model (분산전장 모의환경 구축 방법에 대한 연구 : 단일부대 1:1 교전모델 개발)

  • Choi, Jeongseok;Moon, Sunghwan;Kim, Taeyoung;Kim, Jaekwon;Lee, Jongsik
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • Modern warfare, which adopt an intensive technique of applied sciences, is difficult to predict, and has a high complexity. Thus, it is necessary to build a battle-field environment and simulation-based analysis. Various organizations are participated to build battlefield model for defense M&S according to a scale and format. On the basis of this trend, approaching from various systems is needed to reconfigure battlefield modeling for distributed system. This paper proposes building design for battlefield simulation environment with a sample of one-to-one single unit engagement model. The proposed method can expect to utilize an example of distributed environment for various participants that are involved in battlefield modeling and simulation.

The Optimal Design Technique for Improving Durability of Spline Shaft of the Self Propelled Artillery' Generator (자주포 발전기 스플라인 축 내구성 향상을 위한 최적 설계 기법)

  • Kim, Byeong Ho;Kang, Hyen Jae;Park, Young Il;Seo, Jae Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.485-491
    • /
    • 2015
  • In this study, the experimental and analytical investigation on structural integrity evaluation of spline shaft of self propelled artillery' generator were carried out. For this work, macro and microstructure fractography of spline shaft were observed. According to the results of the structure analysis and simulation, the shaft was redesigned and optimized. To improve the stiffness and shear stress, the material was changed from the SNCM220 to SNCM439 and surface roughness and protective coating treatment are changed to increase the stress relaxation, respectively. From the result of the torsion test of shaft and accelerated life test of generator, the shaft of a SNCM439 with heat-treatment(Q/T) and electroless nickel plating was superior quality reliability and durability than the others. Therefore, modeling and simulation corresponded well with the experimental result and structural safety was confirmed by generator performing.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

Simulation for Propagation Behavior of a Gaussian Beam in Water Medium by Monte Carlo Method

  • Kim, Jae-Ihn;Jeong, Woong-Ji;Cho, Joon-Yong;Jo, Min-Sik;Kim, Hyung-Rok
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.444-448
    • /
    • 2015
  • We describe the radiative transfer of a Gaussian beam in a water medium using the Monte Carlo method offering basic propagation behaviors. The simulation shows how the energy of the initial Gaussian beam is redistributed as it propagates in coastal water, and also depicts the dependence of the propagation behavior on inherent optical properties of the ocean water such as the single scattering albedo as well as on laser beam parameters, e.g. the M squared. Our results may widen the applicability of LIDARs by providing a couple of design considerations for a bathymetric LIDAR.

Multi-UAV Mission Allocation and Optimization Technique Based on Discrete-Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션 기반의 다수 무인기 임무 할당 및 최적화 기법)

  • Lee, Dong Ho;Jang, Hwanchol;Kim, Sang-Hwan;Chang, Woohyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this paper, we propose a heterogenous mission allocation technique for multi-UAV system based on discrete event modeling. We model a series of heterogenous mission creation, mission allocation, UAV departure, mission completion, and UAV maintenance and repair process as a mathematical discrete event model. Based on the proposed model, we then optimize the number of UAVs required to operate in a given scenario. To validate the optimized number of UAVs, the simulations are executed repeatedly, and their results are analyzed. The proposed mission allocation technique can be used to efficiently utilize limited UAV resources, and allow the human operator to establish an optimal mission plan.

A Study on Optimizing Zinc-Air Batteries Using M&S (M&S를 이용한 아연-공기전지 최적화 연구)

  • Lee, Jae-In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • Zinc-air batteries which has various merits in the aspect of energy density, power density and price relative to lithium based second batteries were extensively investigated recently. To develope and optimize these zinc-air batteries, the method of M&S is so efficient solution to reduce price and time. Therefore, in this paper, after executing mathematical modeling, I optimized the zinc-air battery through the simulation and make bolt-cell and discharge it to compare with simulation result. As a result, predictions are well agreed with experimental results.

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

A Study on the Automatic Assembly/Disassembly Procedure for Generating Maintenance Guideline (정비절차 생성을 위한 자동 분해/조립절차 연구)

  • Heo, Gilhwan;Lee, Won;Kwon, Kisang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.594-601
    • /
    • 2015
  • The purpose of this research is to propose a maintenance support system for deciding assembly sequence of the product and appropriate tools that are used to assembly and disassembly of parts in the product when geometric properties of the product. The digital maintenance system (DMS) is developed to generate the maintenance guideline and the initial experiment is conducted especially for an underwater weapon system with cylindrical structure. DMS considers four factors to find the efficient assembly and disassembly procedure automatically: (1) assembly tree, (2) properties of each part, (3) distance from the center of the product, and (4) volume. Based on the factors, DMS simulate the movement of each tool virtually and the properties of tools are investigated to find an appropriate tool for using assembly and disassembly of each part in the product. The proposed approach integrates modeling, simulation, data configuration, and virtual reality to allow a development of preliminary maintenance guidance.

Side Force Modeling of Landing Gear and Ground Directional Controller Design for UAV (무인기용 착륙장치 측력 모델링 및 지상활주 제어기 설계)

  • Cho, Sung-Bong;Ahn, Jong-Min;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.997-1003
    • /
    • 2014
  • This paper describes modeling process to obtain precise landing gear model which is necessary to design a control law for ground auto-taxi, auto take-off/landing of UAV. In this paper, landing gear side force modeling is studied to complete a landing gear model of UAV. Side force modeling is performed by calculating cornering angle including steering angle. And ground directional controller is designed by using nose wheel steering and rudder steering at the same time to control course angle error. Accuracy of landing gear side force modeling and ground directional controller is proved by comparing of auto-taxi test results with simulation results.

Effective Test and Evaluation Approaches for Reliable Defense Systems Development examined through Domestic Defense Cases (국내 사례로 살펴보는 국방체계 개발의 신뢰성을 높이기 위한 시험평가 방안)

  • Seo, Kyung-Min;Lee, Chan Young;Bang, Kyoung Woon;Lee, Dong Chul;Choi, Woo Young;Kim, Tag Gon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.127-134
    • /
    • 2016
  • This paper presents practical issues for test and evaluation(T&E) methods to develop defense systems. Our argument is motivated by several domestic defense cases and the cases lead us to discuss two main factors for reliable defense systems development: 1) statistical approaches and 2) technical schemes. Specifically, statistical approaches enable to provide credible interpretations about T&E results in the decision-making process. With practical T&E results of the “Red Shark” torpedo, we performed statistical hypothesis tests and suggest a minimum sample size to accept the hypothesis. Next, technical schemes have more direct effects on improving reliability of developed defense systems and we shortly introduce tools development for systems verification that is required to integrate several sub-systems, e.g., combat, sensor, weapon, and communication systems, within a defense system. We additionally summary some domain cases using modeling and simulation techniques for successful T&E. In closing, we expect that the paper shows empirical investigation and lessons learned with these two practical issues, which provides a guide those who desire to make decisions about reliable defense systems development.