Steel is one of the most fundamental components to mechanical industry. However, the quality of products are greatly impacted by the surface defects in the steel. Thus, researchers pay attention to the need for surface defects detector and the deep learning methods are the current trend of object detector. There are still limitations and rooms for improvements, for example, related works focus on developing the models but don't take into account real-time application with practical implication on industrial settings. In this paper, a real-time application of steel surface defects detection based on YOLOv4 is proposed. Firstly, as the aim of this work to deploying model on real-time application, we studied related works on this field, particularly focusing on one-stage detector and YOLO algorithm, which is one of the most famous algorithm for real-time object detectors. Secondly, using pre-trained Yolov4-Darknet platform models and transfer learning, we trained and test on the hot rolled steel defects open-source dataset NEU-DET. In our study, we applied our application with 4 types of typical defects of a steel surface, namely patches, pitted surface, inclusion and scratches. Thirdly, we evaluated YOLOv4 trained model real-time performance to deploying our system with accuracy of 87.1 % mAP@0.5 and over 60 fps with GPU processing.
Kim, Young-Bum;Shin, Duk-Ha;Hwang, Seung-Jun;Baek, Joong-Hwan
Journal of Advanced Navigation Technology
/
v.18
no.4
/
pp.304-311
/
2014
In this paper, we propose a ultra sound inspection technique for automatic defect detection and classification in aircraft composite materials. Using local maximum values of ultra sound wave, we choose peak values for defect detection. Distance data among peak values are used to construct histogram and to determine surface and back-wall echo from the floor of composite materials. C-scan image is then composed through this method. A threshold value is determined by average and variance of the peak values, and defects are detected by the values. PCA(principal component analysis) and QDA(quadratic discriminant analysis) are carried out to classify the types of defects. In PCA, 512 dimensional data are converted into 30 PCs(Principal Components), which is 99% of total variances. Computational cost and misclassification rate are reduced by limiting the number of PCs. A decision boundary equation is obtained by QDA, and defects are classified by the equation. Experimental result shows that our proposed method is able to detect and classify the defects automatically.
Defects inspection of commodities are very important with those design and manufacturing process and essential to strengthen the competitiveness of those. If on-line automatic defects detection is performed without damaging to products, the production cost shall be curtailed through the reducing man-power, economical management of Q.C(Quality Control). In this paper, it is suggested three spatial filtering methods which can extract the necessary information in case of defects being on the surface of object like iron plate. In addition, the dependence of filtering characteristics on parameters such as the pitch and width of slits is analyzed and the surface defect detection system is constructed. Several experiments were carried out for determining the adequate spatial filtering method through comparing and analyzing effects of parameters like defect's size and shape, intensity of light, noise of coherent source and slit number.
Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.
Kim, Ji-Hong;Kim, Jeung-Tae;Kim, Jin-Gi;Koo, Ja-Yoon
The Transactions of The Korean Institute of Electrical Engineers
/
v.56
no.6
/
pp.1092-1098
/
2007
Since one decade, the detection of HFPD (High frequency Partial Discharge) has been proposed as one of the effective method for the diagnosis of the power component under service in power grids. As a tool for HFPD detection, Metal Foil sensor based on the embedded technology has been commercialized for mainly power cable due to its advantages. Recently, for the on-site noise discrimination, several PA (Pulse analysis) methods have been reported and the related software, such as Neural Network and Fuzzy, have been proposed to separate the PD (Partial Discharge) signals from the noises since their wave shapes are completely different from each other. On the other hand, the relevant fundamental investigation has not yet clearly made while it is reported that the effectiveness of the current methods based on PA is dependant on the types of sensors. Moreover, regarding the identification of the vital defects introducible into the Power Cable, the direct identification of the nature of defects from the PD signals through Metal Foil coupler has not yet been realized. As a trial for solving above shortcomings, different types of software have been proposed and employed without any convincing probability of identification. In this regards, our novel algorithm 'PA Map' based on the pulse analysis is suggested to identify directly the defects inside the power cable from the HFPD signals which is output of the HFCT and metal foil sensors. This method enables to discriminate the noise and then to make the data analysis related to the PD signals. For the purpose, the HFPD detection and PA (Pulse Analysis) system have been developed and then the effect of noise discrimination has been investigated by use of the artificial defects using real scale mockup. Throughout these works, our system is proved to be capable of separating the small void discharges among the very large noises such as big air corona and ground floating discharges at the on-site as well as of identifying the concerned defects.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.316-319
/
2014
People's interests in coffee are increasing with the expansion of coffee market. In this trend, people's taste becomes more luxurious and coffee bean's quality is considered to be very important. Currently, bean defects are mainly detected by experienced specialists. In this paper, a detection system of bean defects using machine learning is presented. This system concentrates on detecting two main defect types : bean's shape and insect damage. Convolutional Neural Networks are used for machine learning. The neural networks are comprised of two neural networks. The first neural network detects defects in the bean's shape, and the second one detects the bean's insect damage. The development of this system could be a starting point for automated coffee bean defects detection. Later, further research is needed to detect other bean defect types.
SeokMin Oh;JinJe Park;Van-Quan Dao;ByungHo Jang;HeungJae Kim;ChangSoon Kim
Journal of Korea Society of Industrial Information Systems
/
v.29
no.1
/
pp.107-116
/
2024
Copper Filter Dryer (CFD) are responsible for removing impurities from the circulation of refrigerant in refrigeration and cooling systems to maintain clean refrigerant, and defects in CFD can lead to product defects such as leakage and reduced lifespan in refrigeration and cooling systems, making quality assurance essential. In the quality inspection stage, human inspection and defect judgment methods are traditionally used, but these methods are subjective and inaccurate. In this paper, YOLOv7 object detection algorithm was used to detect defects occurring during the CFD Shaft pipe and welding process to replace the existing quality inspection, and the detection performance of F1-Score 0.954 and 0.895 was confirmed. In addition, the cause of defects occurring during the welding process was analyzed by analyzing the sensor data corresponding to the Timestamp of the defect image. This paper proposes a method for manufacturing quality assurance and improvement by detecting defects that occur during CFD process and analyzing their causes.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.5
/
pp.870-876
/
2017
In this paper, we proposed the automatic vision inspection system using multi-layer perceptron to detect the defects occurred on rail surface. The proposed system consists of image acquisition part and analysis part. Rail surface image is acquired as equal interval using line scan camera and lighting. Mean filter and dynamic threshold is used to reduce noise and segment defect area. Various features to characterize the defects are extracted. And they are used to train and distinguish defects by MLP-classifier. The system is installed on HEMU-430X and applied to analyze the rail surface images acquired from Honam-line at high speed up to 300 km/h. Recognition rate is calculated through comparison with manual inspection results.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.20
no.5
/
pp.666-672
/
2011
In this paper, we describes the development of automatic inspection system for detecting the defects on photovoltaic wafer by using machine vision. Until now, The defect inspection process was manually performed by operators. So these processes caused the produce of poorly-made articles and inaccuracy results. To improve the inspection accuracy, the inspection system is not only configured, but the image processing algorithm is also developed. The inspection system includes dimensional verification and pattern matching which compares a 2-D image of an object to a pattern image the method proves to be computationally efficient and accurate for real time application and we confirmed the applicability of the proposed method though the experience in a complex environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.