• Title/Summary/Keyword: Defective Point Mutants

Search Result 8, Processing Time 0.021 seconds

In Vitro Characterization of Protein Kinase CKII β Mutants Defective in β-β Dimerization

  • Kim, Tae-Hyun;Lee, Jae-Yong;Kang, Beom Sik;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.124-130
    • /
    • 2005
  • Protein kinase CKII is composed of two catalytic (${\alpha}$ or ${\alpha}^{\prime}$) subunits and two regulatory (${\beta}$) subunits. The ${\beta}$ subunit mediates tetramer formation through ${\beta}-{\beta}$ homodimerization and ${\alpha}-{\beta}$ heterodimerization. In a previous study R26 and R75, point mutants of $CKII{\beta}$ defective in ${\beta}-{\beta}$ dimerization, were isolated. In the present work we characterized these $CKII{\beta}$ mutants in vitro. Purified R26 and R75 bound to $CKII{\alpha}$ but were defective in binding to $CKII{\beta}$. R75 stimulated the catalytic activity of CKII whereas R26 gave little stimulation, and poly-L-lysine increased the stimulation of catalytic activity by R26 or R75. Circular dichroism and intrinsic fluorescence data pointed to different conformational changes in R26 and R75. Molecular modeling of these mutants provides an explanation of the difference in their ability to interact with $CKII{\beta}$ and to activate $CKII{\alpha}$.

Nuclear Localization Signals in Prototype Foamy Viral Integrase for Successive Infection and Replication in Dividing Cells

  • Hossain, Md. Alamgir;Ali, Md. Khadem;Shin, Cha-Gyun
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.140-148
    • /
    • 2014
  • We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R ${\rightarrow}$ T), 313(R ${\rightarrow}$ T), 315(R ${\rightarrow}$ P), and 329(R ${\rightarrow}$ T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R ${\rightarrow}$ T), 318(K ${\rightarrow}$ T), and 324(K ${\rightarrow}$ T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.

Studies on Differentiation of Aspergillus nidulans (I) : Characterization of temperature-sensitive mutants defective in differentiation of aspergillus nidulans (Aspergillus nidulans의 분화에 있어 온도 감수성 돌연변이주의 특성)

  • 조남정;강현삼
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.173-182
    • /
    • 1982
  • From FGSC 159 strain of Aspergillus nidulans, temperature sensitive mutants that are defective in growth and differentiation have been isolated by N-methyl-N'-nitroN-nitrosoguanidine (NTG) treatment. The optimum concentration of NTG and incubation time to get the highest mutation frequency was $100{\mu}g$ per ml and 1 hour, respectively. The survival frequency was 1%. Among the isolated mutants, five strains that were affected in early steps of differentiation were selected for further studies and named smK, smY, smB, smF, and smZ. The execution point of each mutant was determined and the growing pattern of each mutant at the restrictive temperature was observed under the microscope. Growth of mutant was arrested near at the execution point. From genetic analysis, each temperature-sensitive mutants was thought to have a single recessive gene. The genes of smK, smY, smB, smF, and smZ are linked to the chromosome VII, IV, VIII, I, and VI, respectively. It can be concluded that the genes controlling the differentiation are widely dispersed in the genome. From the results of mutant, smK, it is considered that a single gene can affect a function (functions) which act(s) at two different steps during differentiation.

  • PDF

Characterization of the Functional Domains of Human Foamy Virus Integrase Using Chimeric Integrases

  • Lee, Hak Sung;Kang, Seung Yi;Shin, Cha-Gyun
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.246-255
    • /
    • 2005
  • Retroviral integrases insert viral DNA into target DNA. In this process they recognize their own DNA specifically via functional domains. In order to analyze these functional domains, we constructed six chimeric integrases by swapping domains between HIV-1 and HFV integrases, and two point mutants of HFV integrase. Chimeric integrases with the central domain of HIV-1 integrase had strand transfer and disintegration activities, in agreement with the idea that the central domain determines viral DNA specificity and has catalytic activity. On the other hand, chimeric integrases with the central domain of HFV integrase did not have any enzymatic activity apart from FFH that had weak disintegration activity, suggesting that the central domain of HFV integrase was defective catalytically or structurally. However, these inactive chimeras were efficiently complemented by the point mutants (D164A and E200A) of HFV integrase, indicating that the central domain of HFV integrase possesses potential enzymatic activity but is not able to recognize viral or target DNA without the help of its homologous N-terminal and C-terminal domains.

Identification of Mutations in Protein Kinase CKIIβ Subunit That Affect Its Binding to Ribosomal Protein L41 and Homodimerization

  • Ahn, Bong-Hyun;Lee, Ji-Hoon;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.344-348
    • /
    • 2003
  • Protein kinase CKII is composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits. The $CKII{\beta}$ subunit is thought to mediate the tetramer formation and interact with other target proteins. However, its physiological function remains obscure. In this study, point mutants of $CKII{\beta}$ that are defective for the L41 binding were isolated by using the reverse two-hybrid system. A sequence analysis of the point mutants revealed that Asp-26, Met-52, and Met-78 of $CKII{\beta}$ are critical for L41 binding; Asn-67 (and/or Lys-139) and Met-52 are important for $CKII{\beta}$ homodimerization. Two point mutants, R75 and R83, of $CKII{\beta}$ interacted with L5, topoisomerase $II{\beta}$, and CKBBP1/SAG, but not with the wild-type $CKII{\beta}$. This indicates that $CKII{\beta}$ homodimerization is not a prerequisite for its binding to target proteins. These $CKII{\beta}$ point mutants may be useful in exploring the biochemical physiological functions of $CKII{\beta}$.

Characterization of Human Foamy Virus Integrase Mutant (인간 포미바이러스 인테그라제 돌연변이의 특성)

  • Kang Seung Yi;Oh Soo A;Lee Hak Sung;Han Sung Tai;Shin Cha-Gyun
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.198-204
    • /
    • 2005
  • Human foamy virus (HFV) integrase mediates integration of viral c-DNA into cellular DNA. In this process, HFV integrase recognizes its own viral DNA specifically and catalyzes insertion of viral c-DNA. In order to study catalytic domains and residues, three deletion mutants and two point mutants of HFV integrase were constructed and analyzed with respect to enzymatic activities. The C-terminal deletion mutant showed decreased enzymatic activities while the N-terminal deletion mutant lost the activities completely, indicating that the N-terminal domain is more important than the C-terminal domain in enzymatic reaction. The point mutants, in which an aspartic acid at the 164th position or a glutamic acid at the 200th position of the HFV integrase protein was changed to an alanine, lost the enzymatic activities completely. However, they were well complemented with other defective deletion mutants to recover enzymatic activities partially. Therefore, these results suggest that the aspartic acid and glutamic acid at the respective 164th and 200th positions are catalytic residues for enzymatic reaction.

The regulation of stress induced genes by yeast transcription factor GCN4

  • Seong Kimoon;Lee Jae Yung;Kim Joon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.135-139
    • /
    • 2002
  • Yeast cells respond to condition of amino acid starvation by synthesizing GCN4, a typical eukaryotic transcriptional activator, which regulates the expression of many amino acids biosynthetic genes. By introducing point mutations in the DNA binding domain of GCN4, mutants with normal DNA binding activity but defective in transcriptional activity were isolated to identify unknown proteins that could suppress the mutant phenotype under an amino acid depletion condition. As a result, SSB(Stress-Seventy B) subfamily proteins were identified as suppressors of mutant GCN4. SSB proteins were known as a member of yeast hsp70 family that probably aids passage of nascent chain through ribosomes. Among them, the mechanism of suppression by SSB2 on the defective GCN4 mutant strains is under investigation. Gcn4p directly interacts with Ssb2p through the basic DNA binding domain of GCN4. It suggests the possibility that physical interaction might induce the transcriptional activation of Gcn4p.

  • PDF

Phenotypes of Integrase-Mutated Human Immunodeficiency Virus Type-1(HIV-1)

  • ;Chris M. Farnet;William A. Haseltine
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.92-92
    • /
    • 1993
  • Point mutations in a highly conserved central region of the HIV-1 integrase protein were analyzed for their effects on viral replication and virion morphogenesis. Conservative amino acid replacements of two amino acid residues invariant un retroviral integrases, D116 and E152 of HIV-1, as well as the highly conserved amino acid S147, completely blocked viral replication in two CD4$\^$+/ human T cell lines. Mutation of four other highly conserved amino acids in the region had no detectable effect on viral replication, while Mutations at two positions, N117 and Y143, resulted in viruses with a delayed replication phenotype. Characteristic and reproducible defects id virion core structure were observed by electron microscopic analysis of sore of the replication defective integrase point mutants, indicating that mutant integrase proteins can interfere with the process of virion core maturation.

  • PDF