Browse > Article

Characterization of the Functional Domains of Human Foamy Virus Integrase Using Chimeric Integrases  

Lee, Hak Sung (Department of Biotechnology and Bet Research Institute, Chung-Ang University)
Kang, Seung Yi (Department of Biotechnology and Bet Research Institute, Chung-Ang University)
Shin, Cha-Gyun (Department of Biotechnology and Bet Research Institute, Chung-Ang University)
Abstract
Retroviral integrases insert viral DNA into target DNA. In this process they recognize their own DNA specifically via functional domains. In order to analyze these functional domains, we constructed six chimeric integrases by swapping domains between HIV-1 and HFV integrases, and two point mutants of HFV integrase. Chimeric integrases with the central domain of HIV-1 integrase had strand transfer and disintegration activities, in agreement with the idea that the central domain determines viral DNA specificity and has catalytic activity. On the other hand, chimeric integrases with the central domain of HFV integrase did not have any enzymatic activity apart from FFH that had weak disintegration activity, suggesting that the central domain of HFV integrase was defective catalytically or structurally. However, these inactive chimeras were efficiently complemented by the point mutants (D164A and E200A) of HFV integrase, indicating that the central domain of HFV integrase possesses potential enzymatic activity but is not able to recognize viral or target DNA without the help of its homologous N-terminal and C-terminal domains.
Keywords
Chimeric Integrase; Defective Point Mutants; Functional Domain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Achong, B. G., Mansell, P. W. A., Epstein, M. A., and Clifford, P. (1971) An unusual virus from a human nasopharyngeal carcinoma. J. Natl. Cancer Inst. 46, 299-307
2 Ellison, V., Gerton, J., Vincent, K. A., and Brown, P. O. (1995) An essential interaction between distinct domains of HIV-1 integrase mediates assembly of active multimer. J. Biol. Chem. 270, 3320-3326   DOI   ScienceOn
3 Engelman, A., Hickman, A. B., and Craigie, R. (1994) The core and carboxylterminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J. Virol. 68, 5911-5917
4 Katzman, M. and Sudol, M. (1998) Mapping viral DNA specificity to the central region of integrase by using functional human immunodeficiency virus type 1/visna virus chimeric protein. J. Virol. 72, 1744-1753
5 Katzman, M., Katz, R. A., Skalka, A. M., and Leis, J. (1989) The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J. Virol. 63, 5319-5327
6 Kim, J.-H., Choi, H.-K., Lee, H., Park, H. Y., Kim, J.-H., et al. (2004) Novel and recurrent mutations of the LDL receptor gene in Korean patients with familial hypercholesterolemia. Mol. Cells 18, 63-70
7 Lutzke, R. A., Vink, C., and Plasterk, R. H. A. (1994) Characterization of the minimal DNA-binding domain of HIV integrase protein. Nucleic Acids Res. 22, 4125-4131   DOI   ScienceOn
8 Pahl, A. and Flugel, R. M. (1993) Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J. Virol. 67, 5426-5434
9 Puras-Lutzke, R. A., Vink, C., and Plasterk, R. H. A. (1994) Characterization of the minimal DNA-binding domain of HIV integrase protein. Nucleic Acids Res. 22, 4125-4131   DOI   ScienceOn
10 Shibagaki, Y., Holmes, M. L., Appa, R. S., and Chow, S. A. (1997) Characterization of feline human immunodeficiency virus type 1 integrase and analysis of functional domains. Virology 230, 1-10   DOI   ScienceOn
11 Tasara, T., Amacker, M., and Hubscher, U. (1999) Intramolecular chimeras of the p51 subunit between HIV-1 and FIV reverse transcriptase suggest a stabilizing function for the p66 subunit in the heterodimeric enzyme. J .Virol. 70, 8277-8284
12 Vink, C., Oude Groeneger, A. M., and Plasterk, R. H. (1993) Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type 1 integrase protein. Nucleic Acids Res. 21, 1419-1425   DOI
13 Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G., and Skalka, A. M. (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331- 2338
14 Van Gent, D., Vink, C., Groeneger, A. A., and Plasterk, R. H. (1993) Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12, 3261- 3267
15 Beiger, N., Heller, A. E., Stormann, K. D., and Pfaff, E. (2001) Characterization of chimeric enzymes between caprine arthritis-encephalitis virus, maedi-visna virus and human immunodeficiency virus type 1 integrases expressed in Escherichia coli. J. Gen. Virol. 82, 139-148
16 Gerton, J. L., Herschlag, D., and Brown, P. O. (1999) Stereospecificity of reactions catalyzed by HIV-1 integrase. J. Biol. Chem. 274, 33480-33487   DOI   ScienceOn
17 Woerner, A. M., Klutch, M., Levin, J. G., and Markus-Sekura, C. J. (1992) Localization of DNA binding activity of HIV-1 integrase to the C-terminal half of the protein. AIDS Res. Hum. Retroviruses 8, 2433-2437
18 Bushman, F. D., Engelman, A., Palmer, I., Wingfield, P., and Craigie, R. (1993) Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Natl. Sci. USA 90, 3428-3432
19 Van den Ent, F. M., Vos, A., and Plasterk, R. H. A. (1999) Dissecting the role of the N-terminal domain of human immunodeficiency virus integrase by trans-complementation analysis. J. Virol. 73, 3176-3183
20 Fujiwara, T. and Mizuuchi, K. (1988) Retrovial DNA integration: structure of an integration intermediate. Cell 54, 497- 504   DOI   ScienceOn
21 Appa, R. S., Shin, C.-G., Lee, P., and Chow, S. A. (2001) Role of the nonspecific DNA-binding region and ${\alpha}$ helices within the core domain of retroviral integrase in selecting target DNA sites for integration. J. Biol. Chem. 276, 45848-45855   DOI   ScienceOn
22 Engelman, A. and Craigie, R. (1992) Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66, 6361-6369
23 Engelman, A., Bushman, F. D., and Craigie, R. (1993) Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12, 3269-3275
24 Mizuuchi, K. (1992) Polynucleotidyl transfer reaction in transpositoinal DNA recombination. Annu. Rev. Biochem. 61, 1011-1051   DOI   ScienceOn
25 Chow, S. A., Vincent, K. A., Ellison, V., and Brown, P. O. (1992) Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255, 723-726   DOI
26 Ellison, V. and Brown, P. O. (1994) A stable complex between integrase and viral DNA ends mediates HIV integration in vitro. Proc. Natl. Acad. Sci. USA 91, 7316-7320
27 Oh, Y.-T. and Shin, C.-G. (1999) Comparison of enzymatic activities of the HIV-1 and HFV integrases to their U5 LTR substrates. Biol. Mol. Biol. Int. 612-629
28 Katzman, M. and Sudol, M. (1995) Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrase. J. Virol. 69, 5687-5696
29 Shibagaki, Y. and Chow, S. A. (1997) Central core domain of retroviral integrase is responsible for target site selection. J. Biol. Chem. 272, 8361-8369   DOI   ScienceOn
30 Katzman, M., Sudol, M., Pufnock, J. S., Zeto, S., and Skinner, L. M. (2000) Mapping target site selection for the non-specific nuclease activities of retroviral integrase. Virus Res. 66, 87- 100   DOI   ScienceOn
31 Shin, C.-G., Taddeo, B., Haseltine, W. A., and Farnet, C. F. (1994) Genetic analysis of the human immunodeficiency virus type 1 integrase protein. J. Virol. 68, 1633-1642
32 Rice, P., Craigie, R., and Davies, D. R. (1996) Retroviral integrases and their cousins. Curr. Opin. Struct. Biol. 6, 76-83   DOI   ScienceOn
33 Daniel, R., Katz, R. A., and Skalka, A. M. (1999) A role for DNA-PK in retroviral DNA integration. Science 284, 644- 647   DOI   ScienceOn
34 Khan, E., Mack, J. P. G., Katz, R. A., Kulkosky, J., and Skalka, A. M. (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequence. Nucleic Acids Res. 19, 851-860   DOI   ScienceOn
35 Kaplana, G. V. and Goff, S. P. (1993) Genetic analysis of homomeric interaction of human immunodeficiency virus type 1 integrase using the yeast two-hybrid system. Proc. Natl. Acad. Sci. USA 90, 10593-10597
36 Schauer, M. and Billich, A. (1992) The N-terminal region of HIV-1 integrase is required for integration, but for DNA binding. Biochem. Biophys. Res. Commun. 185, 874-880   DOI   ScienceOn
37 Engelman, A., Mizuuchi, K., and Craigie, R. (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221   DOI   ScienceOn
38 Lodi, P. J., Ernst, J. A., Kuszewski, J., Hickman, A. B., Engelman, A., et al. (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34, 9826-9833   DOI   ScienceOn
39 Brown, P. O., Bowerman, B., Varmus, H. E., and Bishop, J. M. (1989) Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. USA 86, 2525-2529
40 Leavitt, A. D., Shiue, L., and Varmus, H. E. (1993) Site directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J. Biol. Chem. 268, 2113-2119
41 Vincent, K. A., Ellison, V., Chow, S. A., and Brown, P. O. (1993) Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutation. J. Virol. 67, 425-437
42 Flugel, R. M., Rethwilm, A., Maurer, B., and Darai, G. (1987) Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO J. 6, 2077-2084
43 Horton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., et al. (1993) Gene splicing by overlap extension. Methods Enzymol. 217, 270-279   DOI
44 Katzman, M. and Sudol, M. (1996) Non-specific alcoholysis, a novel endonuclease activity of human immunodeficiency virus type 1 and other retroviral integrases. J. Virol. 70, 2598- 2604
45 Pahl, A. and Flugel, R. M. (1995) Characterization of the human spuma retrovirus intgrase by site-directed nutadenesis, complementation analysis, and by swapping the zinc finger domain of HIV-1. J. Biol. Chem. 270, 2957-2966   DOI   ScienceOn
46 Ahn, H.-C., Lee, S.-Y., Kim, J.-W., Son, W. S., Shin, C.-G., et al. (2001) Binding aspects of baicalein to HIV-integrase. Mol. Cells 12, 127-130
47 Didine, S. L., Resress, J., Jolly, D., and Sandmeyer, S. B. (1998) A chimeric Ty3/Moloney murine leukemia virus integrase protein is activity in vivo. J. Virol. 72, 4297-4307