• 제목/요약/키워드: Defect-interaction

Search Result 110, Processing Time 0.025 seconds

Analysis of Stress Distribution Around Micro Hole by F.E.M. -Stress Distribution around Defects Inclusions- (유한요소법에 의한 미소원공 주위의 응력분포 해석 -결함과 개재물 주위의 응력분포-)

  • 송삼홍;김진봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.555-564
    • /
    • 1994
  • This study has been made to investigate the stress distribution around defects and inclusions that behave as stress concentrators. The stress distribution and interation effects around defects and inclusions was analyzed using Finite Element Method. The results are as follows;(1) Maximum stress point in case of $E_I/E_M>1$($E_I$:elasticity modulus forthe inclusion, $E_M$/:elasticity modulus for the base material)is the vertical point with respect to force direction and in case of $E_I/E_M<1$ it is the parallel point along the hole edge. (2) Interaction effects of ${\sigma}_y$ for the inclusion side is larger than the defect side when the interval between inclusion and defect is near. (3) stress interation effects is large if the difference of ${\sigma}_y$ is small and it is small if the difference of ${\sigma}_y$ is large for the case that the interval between inclusion and defect whose size and property are different is near.

The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials (항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동)

  • Song, Sam-Hong;Kim, Cheol-Woong;Kim, Tae-Soo;Hwang, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (I) -Fabrication of SiOx(≤2) Plates Using ion Implantation and Their Structural, Compositional Analysis- (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (I) -이온 주입법을 이용한 SiOx(≤2) 플레이트 제작과 구조 화학적 분석-)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.397-404
    • /
    • 2006
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine chemical quenching phenomenon which is caused by radical adsorption and recombination processes on the surface, thermally grown silicon oxide plates with well-defined defect density were prepared. ion implantation technique was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). It has been found that as the ion energy is increased, the number of structural defect is also increased and non-stoichiometric condition of $SiO_x({\le}2)$ is enhanced.

The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.647-657
    • /
    • 2018
  • Geometric imperfections may be created during the production process or setting borders of single-layer graphene sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even for a graphene without any defects. The effect of aspect ratio, temperature and also size and site of vacancy defects on the material properties of the graphene are studied in this research work. According to the present study, using material properties of flawless graphene for imperfect structure can lead to inaccurate results.

The Effect of Domain Wall on Defect Energetics in Ferroelectric LiNbO3 from Density Functional Theory Calculations

  • Lee, Donghwa
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.312-316
    • /
    • 2016
  • The energetics of defects in the presence of domain walls in $LiNbO_3$ are characterized using density-functional theory calculations. Domain walls show stronger interactions with antisite defects than with interstitial defects or vacancies. As a result, antisite defects act as a strong pinning center for the domain wall in $LiNbO_3$. Analysis of migration behavior of the antisite defects across the domain wall shows that the migration barrier of the antisite defects is significantly high, such that the migration of antisite defects across the domain wall is energetically not preferable. However, further study on excess electrons shows that the migration barrier of antisite defects can be lowered by changing the charge states of the antisite defects. So, excess electrons can enhance the migration of antisite defects and thus facilitate domain wall movement by weakening the pinning effect.

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.93-104
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer

  • Ko, Je Yeong;Lee, Eun Ji;Park, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.337-341
    • /
    • 2019
  • Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.

A Research on the Paradigm of Interaction Based on Attributes (인터렉션 속성에 기초한 인터렉션 범식화 연구)

  • Shan, Shu Ya;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.127-138
    • /
    • 2021
  • The aim of this study is to demonstrate interaction as a describable field and tries to understand interaction from the perspective of attributes, thus building a theoretical to help interactive designer understand this field by common rule, rather than waste huge time and labor cost on iteration. Since the concept of interaction language has been brought out in 2000, there are varies of related academical studies, but all with defect such as proposed theoretical models are built on a non-uniform scale, or the analyzing perspective are mainly based on researcher's personal experience and being too unobjective. The value of this study is the clustered resource of research which mainly based on academical review. It collected 21 papers researched on interaction paradigm or interaction attributes published since 2000, extracting 19 interaction attribute models which contains 174 interaction attributes. Furthermore, these 174 attributes were re-clustered based on a more unified standard scale, and the two theoretical models summarized from it are respectively focuses on interaction control and interaction experience, both of which covered 6 independent attributes. The propose of this theoretical models and the analyzation of the cluster static will contribute on further revealing of the importance of interaction attribute, or the attention interaction attribute has been paid on. Also, in this regard, the interactive designer could reasonably allocate their energy during design process, and the future potential on various direction of interaction design could be discussed.