Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.056

Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer  

Ko, Je Yeong (Department of Life Systems, Sookmyung Women's University)
Lee, Eun Ji (Department of Life Systems, Sookmyung Women's University)
Park, Jong Hoon (Department of Life Systems, Sookmyung Women's University)
Publication Information
Biomolecules & Therapeutics / v.27, no.4, 2019 , pp. 337-341 More about this Journal
Abstract
Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.
Keywords
Cilia; Autophagy; Ciliopathy; Cancer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhi, X. and Zhong, Q. (2015) Autophagy in cancer. F1000Prime Rep. 7, 18.   DOI
2 Zingg, D., Debbache, J., Pena-Hernandez, R., Antunes, A. T., Schaefer, S. M., Cheng, P. F., Zimmerli, D., Haeusel, J., Calcada, R. R., Tuncer, E., Zhang, Y., Bossart, R., Wong, K. K., Basler, K., Dummer, R., Santoro, R., Levesque, M. P. and Sommer, L. (2018) EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34, 69-84.e14.   DOI
3 Moon, H., Song, J., Shin, J. O., Lee, H., Kim, H. K., Eggenschwiller, J. T., Bok, J. and Ko, H. W. (2014) Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling. Proc. Natl. Acad. Sci. U.S.A. 111, 8541-8546.   DOI
4 Nakatogawa, H., Ichimura, Y. and Ohsumi, Y. (2007) Atg8, a ubiquitinlike protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165-178.   DOI
5 Nobutani, K., Shimono, Y., Yoshida, M., Mizutani, K., Minami, A., Kono, S., Mukohara, T., Yamasaki, T., Itoh, T., Takao, S., Minami, H., Azuma, T. and Takai, Y. (2014) Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells 19, 141-152.   DOI
6 Okada, Y., Nonaka, S., Tanaka, Y., Saijoh, Y., Hamada, H. and Hirokawa, N. (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459-468.   DOI
7 Pampliega, O. and Cuervo, A. M. (2016) Autophagy and primary cilia: dual interplay. Curr. Opin. Cell Biol. 39, 1-7.   DOI
8 Pampliega, O., Orhon, I., Patel, B., Sridhar, S., Diaz-Carretero, A., Beau, I., Codogno, P., Satir, B. H., Satir, P. and Cuervo, A. M. (2013) Functional interaction between autophagy and ciliogenesis. Nature 502, 194-200.   DOI
9 Plotnikova, O. V., Nikonova, A. S., Loskutov, Y. V., Kozyulina, P. Y., Pugacheva, E. N. and Golemis, E. A. (2012) Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol. Biol. Cell 23, 2658-2670.   DOI
10 Plotnikova, O. V., Pugacheva, E. N. and Golemis, E. A. (2009) Primary cilia and the cell cycle. Methods Cell Biol. 94, 137-160.   DOI
11 Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132.   DOI
12 Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. and Korc, M. (2009b) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422-430.   DOI
13 Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. and Golemis, E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363.   DOI
14 Ritter, A., Friemel, A., Kreis, N. N., Hoock, S. C., Roth, S., Kielland-Kaisen, U., Bruggmann, D., Solbach, C., Louwen, F. and Yuan, J. (2018) Primary cilia are dysfunctional in obese adipose-derived mesenchymal stem cells. Stem Cell Reports 10, 583-599.   DOI
15 Seeley, E. S., Carriere, C., Goetze, T., Longnecker, D. S. and Korc, M. (2009a) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422-430.   DOI
16 Servattalab, S., Yildiz, O. and Khanna, H. (2012) Tackling primary cilia dysfunction in photoreceptor degenerative diseases of the eye. Int. J. Ophthalmic. Pathol. 1, e101.
17 Shin, J. H., Bae, D. J., Kim, E. S., Kim, H. B., Park, S. J., Jo, Y. K., Jo, D. S., Jo, D. G., Kim, S. Y. and Cho, D. H. (2015a) Autophagy regulates formation of primary cilia in mefloquine-treated cells. Biomol Ther (Seoul) 23, 327-232.   DOI
18 Song, D. K., Choi, J. H. and Kim, M. S. (2018) Primary cilia as a signaling platform for control of energy metabolism. Diabetes Metab. J. 42, 117-127.   DOI
19 Agbu, S. O., Liang, Y., Liu, A. and Anderson, K. V. (2018) The small GTPase RSG1 controls a final step in primary cilia initiation. J. Cell Biol. 217, 413-427.   DOI
20 Shin, J. H., Kim, P. S., Kim, E. S., Park, S. J., Jo, Y. K., Hwang, J. J., Park, T. J., Chang, J. W., Seo, J. H. and Cho, D. H. (2015b) BIX-01294-induced autophagy regulates elongation of primary cilia. Biochem. Biophys. Res. Commun. 460, 428-433.   DOI
21 Taschner, M., Bhogaraju, S. and Lorentzen, E. (2012) Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12-S22.   DOI
22 Alers, S., Loffler, A. S., Wesselborg, S. and Stork, B. (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2-11.   DOI
23 Stanley, R. E., Ragusa, M. J. and Hurley, J. H. (2014) The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24, 73-81.   DOI
24 Struchtrup, A., Wiegering, A., Stork, B., Ruther, U. and Gerhardt, C. (2018) The ciliary protein RPGRIP1L governs autophagy independently of its proteasome-regulating function at the ciliary base in mouse embryonic fibroblasts. Autophagy 14, 567-583.   DOI
25 Takahashi, K., Nagai, T., Chiba, S., Nakayama, K. and Mizuno, K. (2018) Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J. Cell Sci. 131, jcs208769.   DOI
26 Tang, Z., Lin, M. G., Stowe, T. R., Chen, S., Zhu, M., Stearns, T., Franco, B. and Zhong, Q. (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254-257.   DOI
27 Battle, C., Ott, C. M., Burnette, D. T., Lippincott-Schwartz, J. and Schmidt, C. F. (2015) Intracellular and extracellular forces drive primary cilia movement. Proc. Natl. Acad. Sci. U.S.A. 112, 1410-1415.   DOI
28 Avalos, Y., Pena-Oyarzun, D., Budini, M., Morselli, E. and Criollo, A. (2017) New roles of the primary cilium in autophagy. Biomed. Res. Int. 2017, 4367019.
29 Basten, S. G. and Giles, R. H. (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2, 6.   DOI
30 Basten, S. G., Willekers, S., Vermaat, J. S., Slaats, G. G., Voest, E. E., van Diest, P. J. and Giles, R. H. (2013) Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia 2, 2.   DOI
31 Cao, M. and Zhong, Q. (2015) Cilia in autophagy and cancer. Cilia 5, 4.   DOI
32 Chaya, T., Omori, Y., Kuwahara, R. and Furukawa, T. (2014) ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 33, 1227-1242.   DOI
33 Cloonan, S. M., Lam, H. C., Ryter, S. W. and Choi, A. M. (2014) "Ciliophagy": the consumption of cilia components by autophagy. Autophagy 10, 532-534.   DOI
34 Dasgupta, A. and Amack, J. D. (2016) Cilia in vertebrate left-right patterning. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150410.   DOI
35 Delaine-Smith, R. M., Sittichokechaiwut, A. and Reilly, G. C. (2014) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J. 28, 430-439.   DOI
36 Wang, S., Livingston, M. J., Su, Y. and Dong, Z. (2015) Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 11, 607-616.   DOI
37 Taylor, S. P., Dantas, T. J., Duran, I., Wu, S., Lachman, R. S.; University of Washington Center for Mendelian Genomics Consortium, Nelson, S. F., Cohn, D. H., Vallee, R. B. and Krakow, D. (2015) Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat. Commun. 6, 7092.   DOI
38 Tong, Y., Park, S. H., Wu, D., Xu, W., Guillot, S. J., Jin, L., Li, X., Wang, Y., Lin, C. S. and Fu, Z. (2017) An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome. FEBS Lett. 591, 1247-1257.   DOI
39 Volta, F. and Gerdes, J. M. (2017) The role of primary cilia in obesity and diabetes. Ann. N. Y. Acad. Sci. 1391, 71-84.   DOI
40 Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12.   DOI
41 Higgins, M., Obaidi, I. and McMorrow, T. (2019) Primary cilia and their role in cancer. Oncol. Lett. 17, 3041-3047.   DOI
42 Hsiao, C. J., Chang, C. H., Ibrahim, R. B., Lin, I. H., Wang, C. H., Wang, W. J. and Tsai, J. W. (2018) Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia. J. Cell Sci. 131, jcs221218.   DOI
43 Jenks, A. D., Vyse, S., Wong, J. P., Kostaras, E., Keller, D., Burgoyne, T., Shoemark, A., Tsalikis, A., de la Roche, M., Michaelis, M., Cinatl, J., Jr., Huang, P. H. and Tanos, B. E. (2018) Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23, 3042-3055.   DOI
44 Jonassen, J. A., San Agustin, J., Follit, J. A. and Pazour, G. J. (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377-384.   DOI
45 Jonassen, J. A., SanAgustin, J., Baker, S. P. and Pazour, G. J. (2012) Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J. Am. Soc. Nephrol. 23, 641-651.   DOI
46 Kasahara, K., Kawakami, Y., Kiyono, T., Yonemura, S., Kawamura, Y., Era, S., Matsuzaki, F., Goshima, N. and Inagaki, M. (2014) Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 5, 5081.   DOI
47 Kihara, A., Kabeya, Y., Ohsumi, Y. and Yoshimori, T. (2001) Beclinphosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330-335.   DOI
48 White, E. (2015) The role for autophagy in cancer. J. Clin. Invest. 125, 42-46.   DOI
49 Wang, Z. L., Deng, Q., Chong, T. and Wang, Z. M. (2018) Autophagy suppresses the proliferation of renal carcinoma cell. Eur. Rev. Med. Pharmacol. Sci. 22, 343-350.
50 Wheway, G., Parry, D. A. and Johnson, C. A. (2014) The role of primary cilia in the development and disease of the retina. Organogenesis 10, 69-85.   DOI
51 Wiegering, A., Ruther, U. and Gerhardt, C. (2019) The role of primary cilia in the crosstalk between the ubiquitin-proteasome system and autophagy. Cells 8, 241.   DOI
52 Xiao, Z. S. and Quarles, L. D. (2010) Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann. N. Y. Acad. Sci. 1192, 410-421.   DOI
53 Youn, Y. H. and Han, Y. G. (2018) Primary cilia in brain development and diseases. Am. J. Pathol. 188, 11-22.   DOI
54 Xu, Q., Liu, W., Liu, X., Liu, W., Wang, H., Yao, G., Zang, L., Hayashi, T., Tashiro, S., Onodera, S. and Ikejima, T. (2016) Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells. Mol. Cell. Biochem. 420, 53-63.   DOI
55 Xu, Q., Liu, W., Liu, X., Otkur, W., Hayashi, T., Yamato, M., Fujisaki, H., Hattori, S., Tashiro, S. I. and Ikejima, T. (2018) Type I collagen promotes primary cilia growth through down-regulating HDAC6-mediated autophagy in confluent mouse embryo fibroblast 3T3-L1 cells. J. Biosci. Bioeng. 125, 8-14.   DOI
56 Yang, S. H., Wang, X. X., Contino, G., Liesa, M., Sahin, E., Ying, H. Q., Bause, A., Li, Y. H., Stommel, J. M., Dell'Antonio, G., Mautner, J., Tonon, G., Haigis, M., Shirihai, O. S., Doglioni, C., Bardeesy, N. and Kimmelman, A. C. (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729.   DOI
57 Lechtreck, K. F. (2015) IFT-cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765-778.   DOI
58 Kim, E. S., Shin, J. H., Park, S. J., Jo, Y. K., Kim, J. S., Kang, I. H., Nam, J. B., Chung, D. Y., Cho, Y., Lee, E. H., Chang, J. W. and Cho, D. H. (2015a) Inhibition of autophagy suppresses sertralinemediated primary ciliogenesis in retinal pigment epithelium cells. PLoS ONE 10, e0118190.   DOI
59 Kim, J., Jo, H., Hong, H., Kim, M. H., Kim, J. M., Lee, J. K., Heo, W. D. and Kim, J. (2015b) Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 6, 6781.   DOI
60 Kobayashi, T. and Itoh, H. (2017) Loss of a primary cilium in PDAC. Cell Cycle 16, 817-818.   DOI
61 Lee, J., Yi, S., Kang, Y. E., Chang, J. Y., Kim, J. T., Sul, H. J., Kim, J. O., Kim, J. M., Kim, J., Porcelli, A. M., Kim, K. S. and Shong, M. (2016) Defective ciliogenesis in thyroid hurthle cell tumors is associated with increased autophagy. Oncotarget 7, 79117-79130.   DOI
62 Liu, Z. Q., Lee, J. N., Son, M., Lim, J. Y., Dutta, R. K., Maharjan, Y., Kwak, S., Oh, G. T., Byun, K., Choe, S. K. and Park, R. (2018) Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo. Autophagy 14, 1011-1027.
63 Malicki, J. J. and Johnson, C. A. (2017) The cilium: cellular antenna and central processing unit. Trends Cell Biol. 27, 126-140.   DOI
64 Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P., Engedal, N., Mari, M. and Reggiori, F. (2018) Chloroquine inhibits autophagic flux by decreasing autophagosomelysosome fusion. Autophagy 14, 1435-1455.   DOI
65 Zhao, Y. G. and Zhang, H. (2019) Autophagosome maturation: an epic journey from the ER to lysosomes. J. Cell Biol. 218, 757-770.   DOI
66 Menzl, I., Lebeau, L., Pandey, R., Hassounah, N. B., Li, F. W., Nagle, R., Weihs, K. and McDermott, K. M. (2014) Loss of primary cilia occurs early in breast cancer development. Cilia 3, 7.   DOI
67 Yuan, K., Frolova, N., Xie, Y., Wang, D., Cook, L., Kwon, Y. J., Steg, A. D., Serra, R. and Frost, A. R. (2010) Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J. Histochem. Cytochem. 58, 857-870.   DOI