• Title/Summary/Keyword: Defect propagation

Search Result 140, Processing Time 0.025 seconds

UT Inspection Technique of Cast Stainless Steel Piping Welds Using Low Frequency TRL UT Probe (저주파수 TRL 탐촉자를 이용한 Cast Stainless Steel 배관 용접부 초음파탐상기법)

  • Shin, Keon-Cheol;Chang, Hee-Jun;Jeong, Young-Cheol;Noh, Ik-Jun;Lee, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • Ultrasonic inspection of heavy walled cast austenitic stainless steel(CASS)welds is very difficult due to complex and coarse grained structure of CASS material. The large size of anisotropic grain strongly affects the propagation of ultrasound by severe attenuation, change in velocity, and scattering of ultrasonic energy. therefore, the signal patterns originated from flaws can be difficult to distinguish from scattered signals. To improve detection and sizing capability of ID connected defect for heavy walled CASS piping welds, the low frequency segmented TRL Pulse Echo and Phased Array probe has been developed. The experimental studies have been performed using CASS pipe mock-up block containing artificial reflectors(ID connected EDM notch). The automatic pulse echo and phase array technique is applied the detection and the length sizing of the ID connected artificial reflectors and the results for detection and sizing has been compared respectively. The goal of this study is to assess a newly developed ultrasonic probe to improve the detection ability and the sizing of the crack in coarse-grained CASS components.

  • PDF

Assessment on Aging Management of Delayed Neutron Monitoring System Tubing for Continued Operation of Wolsong Unit 1 (월성1호기 계속운전 관련 결함연료위치탐지계통 배관의 열화관리평가)

  • Song, Myung Ho;Kim, Hong Key;Lee, Young Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.14-20
    • /
    • 2011
  • The end of design lifetime for Wolsong unit 1 will be reached on 20th November in 2012. So the license renewal documents for the continuous operation of Wolsong unit 1 is under reviewing now. Major components of primary system such as pressure tubes, feeder pipes including delayed neutron monitoring system tubing are being replaced and many components of secondary system are also being repaired. In this paper, the assessment on the wear degradation of delayed neutron monitoring system tubing(on the other hand, DN tube was called) was performed for the ageing management of the same component. The wear defects of this component was one of causes that resulted in heavy water leakage accidents. Therefore design specifications of Wolsong uint 1 and heavy water leakage accidents of pressurized heavy water reactors were reviewed and causes of wear defect for DN tubes were analyzed. Wear propagation equations based on the heavy water leakage history were made and the proper repairing time was possible to be expected if the continued operation was considered. Finally design change items of DN tubes that were conducted for the long term operation of Wolsong unit 1 are introduced.

Crack Size Determination Through Neural Network Using Back Scattered Ultrasonic Signal (저면산란 초음파 신호 및 신경회로망을 이용한 균열크기 결정)

  • Lee, Jun-Hyeon;Choe, Sang-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.52-61
    • /
    • 2000
  • The role of quantitative nondestructive evaluation of defects is becoming more important to assure the reliability and the safety of structure, which can eventually be used for residual life evaluation of structure on the basis of fracture mechanics approach. Although ultrasonic technique is one of the most widely used techniques for application of practical field test among the various nondestructive evaluation technique, there are still some problems to be solved in effective extraction and classification of ultrasonic signal from their noisy ultrasonic waveforms. Therefore, crack size determination through a neural network based on the back-propagation algorithm using back-scattered ultrasonic signals is established in this study. For this purpose, aluminum plate containing vertical or inclined surface breaking crack with different crack length was used to receive the back-scattered ultrasonic signals by pulse echo method. Some features extracted from these signals and sizes of cracks were used to train neural network and the neural network's output of the crack size are compared with the true answer.

Recognition of Disease in Medical Image (의료영상의 질환인식)

  • 신승수;이상복;조용환
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.

  • PDF

Dislocation structure in hot-pressed polycrystalline $TiB_{2}$ (고온가압성형된 다결정 $TiB_{2}$내에서 전위구조)

  • Kwang Bo Shim;Brian Ralph;Keun Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.194-202
    • /
    • 1996
  • Transmission electron microscopy has been used to characterize the dislocation structure in hot-pressed titanium diboride. The thin foil samples were prepared by the conventional ion beam thinning technique and reveal the main features associated with the dislocations ; low-angle grain boundaries with dislocation arrays, high-angle grain boundaries with ledges/steps on the boundary planes. The ledges/steps on the grain boundaries were characterized as the origin of defect structures such as dislocation formation or crack propagation near grain boundaries. A fraction of the high angle grain boundaries contained periodic arrays of grain boundary dislocations. The Burger's vectors of the dislocations in the $TiB_{2}$specimens were determined.

  • PDF

Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어)

  • Gang, Yeong-Ho;Kim, Nak-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

Time-Frequency Analysis of Lamb wave mode (램파모드의 시간-주파수 해석)

  • 박익근;안형근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.133-140
    • /
    • 2001
  • Recently, to assure the integrity of a structural components such as piping pressure vessels and thinning structure, Lamb wave inspection technique has been used in material evaluation. It is very important to select the optimal Lamb wave mode and to analyze the signal accurately because of its unique dispersion properties grnerating several modes within the speci-men. It this study, the feasibility of material evaluation applications using wavelet analysis of Lamb wave has been veir-fied experimentally. These results show as follows; 1)dispersion characteristic of each mode in dispersion curve is demon-strated that A0 mode propagating material surface is useful mode having the lest energy loss and not sensitive to surface condition. 2) it can be detected even the micro defect ($1\times2mm$) fabricated in ultrasonic probe flaw distance (290mm) to axis direction. 3) the wavelet transform which is called "time-frequency analysis" shows the Lamb wave propagation due to the change of materials characterization can be evaluated at each frequency and experimental group velocity of Lamb wave agrees quite well with that of simulated dispersion curve.ion curve.

  • PDF

Rayleigh wave for detecting debonding in FRP-retrofitted concrete structures using piezoelectric transducers

  • Mohseni, H.;Ng, C.T.
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • Applications of fibre-reinforced polymer (FRP) composites for retrofitting, strengthening and repairing concrete structures have been expanded dramatically in the last decade. FRPs have high specific strength and stiffness compared to conventional construction materials, e.g., steel. Ease of preparation and installation, resistance to corrosion, versatile fabrication and adjustable mechanical properties are other advantages of the FRPs. However, there are major concerns about long-term performance, serviceability and durability of FRP applications in concrete structures. Therefore, structural health monitoring (SHM) and damage detection in FRP-retrofitted concrete structures need to be implemented. This paper presents a study on investigating the application of Rayleigh wave for detecting debonding defect in FRP-retrofitted concrete structures. A time-of-flight (ToF) method is proposed to determine the location of a debonding between the FRP and concrete using Rayleigh wave. A series of numerical case studies are carried out to demonstrate the capability of the proposed debonding detection method. In the numerical case studies, a three-dimensional (3D) finite element (FE) model is developed to simulate the Rayleigh wave propagation and scattering at the debonding in the FRP-retrofitted concrete structure. Absorbing layers are employed in the 3D FE model to reduce computational cost in simulating the practical size of the FRP-retrofitted structure. Different debonding sizes and locations are considered in the case studies. The results show that the proposed ToF method is able to accurately determine the location of the debonding in the FRP-retrofitted concrete structure.

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect - (보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구-)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

Fracture Mechanism of Gas Turbine Compressor Blades in a Combined Cycle Power Plant (복합화력발전소 가스터빈 압축기 블레이드에 대한 손상원인 고찰)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop;Cho, Cheul-Whan;Yun, Wan-No;Jung, Nam-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1025-1032
    • /
    • 2010
  • Gas turbine compressor blades used in a combined cycle power plant are possibly damaged and fractured during their operation. There are two possible causes of the failure of compressor blades; one is a defect of material quality which can be detected through some microscopic inspections for the fracture section, the other is high cycle fatigue problem caused by vibration and can be diagnosed by carrying out dynamic characteristics analysis for the blades. In this paper, in order to determine the cause of the failure of compressor blades in a combined cycle power plant, examination of the fracture section and the propagation mechanism of the crack via stress analysis are performed. Dynamic characteristics analysis via FRF estimation is also performed to identify the cause of failure.