• Title/Summary/Keyword: Defect detectability

Search Result 16, Processing Time 0.024 seconds

An Experimental Study on the Characteristic of Bearings with a Defect using the Sound-Intensity Technique (음향 인텐시티를 이용한 결함이 있는 베어링의 특성에 관한 실험적 연구)

  • 이해철;김명균;안기순;차경옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.222-228
    • /
    • 1999
  • The two-microphone sound-intensity technique has been used for the detection of defects in radially loaded ball bearings. The difference in the sound-intensity levels measured for bearings with no defect and for those with intentionally introduced defects of different sizes in their elements under various operating conditions of loads and speeds is demonstrated. A change in the intensity frequency spectrum because of the defects is observed. The results show that the detectability of an outer-race defect is much better than that of on inner-race or ball defect. It is difficult to detect defects at lower speeds. Sound-pressure measurements were also performed fur comparison, and it is shown that the detectability of defects by sound-intensity measurements is better than that by sound-pressure measurements.

  • PDF

Study on the Defect Detectability in Carbon Fiber Reinforced Plastic Sheet by the Ultrasonic Immersed Reflector Plate Method. (Ultrasonic Immersed Reflector Plate Mechod를 이용한 박판형 CFRP 소재의 결함탐지능에 관한 연구)

  • Lee, Jae-Ok;Lee, Se-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 1986
  • The optimumultrasonic test conditions for the thin carbon fiber reinforced plastic (CFRP) sheet were determined for the immersed reflector plate method. The effects of the water distance, the surface conditions of the specimen and transducer characteristics were studied. For a reliable test the water distance between the transducer and the front surface of the specimen should be determined when the beam profile of the transducer appears in the bell-shape. The detectability of the defect was improved as the effective beam width of the ultrasonic transducer became narrow. The transducer should be properly chosen considering to the surface condition of the test material as well as the size and type of the defect to be detected. It was possible to detect the flat bottom hole whose diameter is as small as about 500 micrometer.

  • PDF

An Experimental Study of the Application of the Sound-Intensity Technique on the Detection of Defect in Rolling Bearings (굴림 베어링 요소의 결함 검출시 음향 인텐시티기술적용에 관한 실험적 연구)

  • 차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.473-479
    • /
    • 1999
  • The two-microphone sound-intensity technique has been used for the detection of defects in ra-ally loaded ball bearings. The difference in the sound-intensity levels measured for bearings with no defect and for those with intentionally introduced defects of different sizes n heir elements under various operating conditions of loads and speeds is demonstrated. The results show that of an inner-race or ball defect. It is difficult to detect defects at lower speeds. Sound-pressure measurements were also performed for comparison and it shown that the detectability of defects by sound-intensity measurements is better than that by sound-pressure measurements.

  • PDF

A RADIOGRAPHIC STUDY OF THE EXPERIMENTAL LESIONS IN THE MAXILLARY SINUS (상악동의 실험병소에 관한 X선학적 연구)

  • Lee Joo Hyun;Hwang Eui Hwan;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.1
    • /
    • pp.115-124
    • /
    • 1994
  • The purpose of this study was to examine the differences in representation of a globular radiopaque mass on the pantomograms and Waters' views and to compare the efficacy of periapical radiograms, pantomograms and Waters' views in detection of defects on the internal walls of the maxillary sinus. This study was performed with dried human skull. For the study of difference of radiopaque mass shadow in the two views, rubber ball with a diameter of 10㎜ was used as the experimental lesion. It was placed successively on the internal wall of the anterior, posterior, medial, lateral walls and floor of the maxillary sinus. To examine the detectability of defects for radiographic techniques, defects were formed in the anterior, posterior, medial, lateral walls, and floor of the maxillary sinus. They were formed with 0.5㎜, 0.75㎜, 1.0㎜, 2.0㎜ and 3.0㎜ sized steel round burs with a slow speed dental handpiece. By subsequently plugging the holes with zinc oxide eugenol paste, radiopaque defects were produced. After that the periapical radiograms, the pantomograms and the Waters' views were taken each and every defect. The obtained results were as follows: 1. Rubber balls placed on each internal wall of the maxillary sinus were correctly depicted on the posterior wall and the floor in case of the pantomogram, and on the anterior wall and the medial wall in case of the Waters' view. 2. On the detectability of defects for each radiographic technique, radiolucent defects were detected in different places for each technique. Periapical radiogram could detect 1.0㎜ defect on the floor of the maxillary sinus, pantomogram could detect 2.0㎜ defect on every internal wall of the maxillary sinus, and Waters' view could detect 3.0㎜ defect on the anterior wall of the maxillary sinus. 3. On the detectability of defects for each radiographic technique, radiopaque defects were detected in different places for each technique. Periapical radiogram could clearly detect 0.5㎜ defect on the floor of the maxillary sinus, pantomogram could detect 0.5㎜ defect on every internal wall of the maxillary sinus, and finally Waters' view could detect 0.5㎜defect on the anterior wall of the maxillary sinus but 0.75㎜ defect on the anterior wall, lateral wall and floor of the maxillary sinus. As the result, the periapical radiogram is the most simple and satisfactory method for investigating in the maxillary sinus. The pantomogram is suitable method for screening of changes in the maxillary sinus. And the Waters' view is available for detect of lesion in the anterior wall of the maxillary sinus. For the purpose of accurate diagnosis and evaluation of lesion in the maxillary sinus, these techniques supplement each other.

  • PDF

Flaw Detection of Petrochemical Pipes using Torsional Waves (비틀림파를 이용한 석유화학 파이프의 결함탐지)

  • Park, K.J.;Kang, W.S.;Kang, D.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.46-51
    • /
    • 2010
  • A torsional guided wave was applied to detect a defect in petrochemical pipes. Phase and group velocity dispersion curves for the longitudinal and torsional modes of the inspected pipe were presented for the theoretical analysis. It was found through mode shape analysis that there was mode conversion when torsional wave is incident at an asymmetric defect. An artificial notch was fabricated in the pipe and the detectability was examined from the distance 2m of the end of the pipe by using magnetostrictive sensors. The relativities between the amplitude of the reflected signal and the size of the defect was examined. It was shown that the T(0,1) mode could be used for the long range inspection for the petrochemical pipes.

A Basic Study on the Defect Detectability of Austenitic Stainless Steel Weldments using Ultrasonic Testing (초음파를 이용한 Austenitic Stainless Steel 용접부의 결함검출에 관한 기초적 연구)

  • Park, M.H.;Park, K.H.;Seo, D.M.;Yoon, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.8-21
    • /
    • 1989
  • This paper presents the ultrasonic characteristics of weldment and detectability of defects of weldment in Austenitic Stainless Steel Type 304 that is composed of mostly coolant piping system in nuclear power plants. The results of this experient show as follows: 1. When the ultrasonic beam detects the defects on the side of base metal and on the opposite side of weldment, the indications which was detected on the screen show different amplitude and different metal path each. 2. The ultrasonically estimated notch depth is generally oversized than actual notch depth. 3. It is easy for the false indication to show up on the screen because of columnar structure of weldment in austenitic stainless steel. 4. The higher frequencies of transducer have more difficulties to detect the defects of the opposite side of weldment because of ultrasonic attenuation in weldment and the longitudinal transmitter-receiver transducer is the most effective in detecting the opposite side defects of weldment.

  • PDF

A Study on TOFD Inspection Using Phased Array Ultrasonic Technique (위상배열 초음파 기법을 이용한 TOFD 검사에 관한 연구)

  • Yoon, Byung-Sik;Kim, Yong-Si;Lee, Hee-Jong;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.304-310
    • /
    • 2005
  • The techniques in order to measure the depth of defect in weldment and structure accurately have been developed. Many researches have made efforts to develop the methods for the accurate depth sizing of defect. TOFD is known as the most accurate method of various methods for measuring depth sizing. However, there is a possibility to miss defects because of the limitation of beam coverage for the ultrasound incident angle. In this study, the results for detectability and depth sizing using phased array ultrasonic technique for thick body were compared with those of conventional TOFD technique. It was experimentally confirmed that the phased array ultrasonic TOFD technique gives good detectability and accurate depth measurement for the various types of defects. The phased array ultrasonic TOFD technique developed in this study will contribute to increase the inspection reliability in thick component such as the pressure vessel of power generation industry.

Detectability of Ektaspeed Plus Film, Digitized and Digora Images for Artificial Periapical Bone Lesions (Ektaspeed Plus 방사선사진, 간접 디지털 영상 및 Digora 영상의 치근단 병소의 판독능 비교)

  • Cho Bong-Hae;Nah Kyung-Soo;Lee Hee-Joo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.461-470
    • /
    • 1998
  • The comparative detectability of the artificial periapical defects among Ektaspeed Plus film. digitized and digora images was evaluated. The artifical defects were made in the cancellous bone and cancellous-cortical junction with the size of 1.0×0.8mm², 1.4×1.1mm² and 2.8×2.2mm². The defects in cancellous-cortical junction extended into cortical bone with the depth of 0, 0.5 and 1.0 mm. The results were as follows : 1. In junctional defects Ektaspeed Plus film for 2.8×12.2mm² defect showed the highest detectability. But significant difference were only found between Ektaspeed Plus films and digitized images (p<0.05). 2. Almost all defects within cacellous bone were not detected except a few digitized and Digora images for the size of 2.8×2.2mm². Digora images for them showed significant differences with Ektaspeed Plus films and digitized images (p<0.05). 3. The sensitinity of all imaging modalities were 0.9 or 1.0 in junctional defects for the size of 1.4×2.2mm² and 2.8×2.2mm². For cancellous defects, Digora image showed the highest sensitivity of 0.6 for the size of 2.8×2.2mm². 4. Significant differences for change of exposure time were found in most group of Ektaspeed Plus films and digitized images (p<0.05) . But there was no significant differences in Digora images for cacellous defects.

  • PDF

Evaluation of peri-implant bone defects on cone-beam computed tomography and the diagnostic accuracy of detecting these defects on panoramic images

  • Takayuki Oshima;Rieko Asaumi;Shin Ogura;Taisuke Kawai
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.171-180
    • /
    • 2024
  • Purpose: This study was conducted to identify the typical sites and patterns of peri-implant bone defects on cone-beam computed tomography (CBCT) images, as well as to evaluate the detectability of the identified bone defects on panoramic images. Materials and Methods: The study population included 114 patients with a total of 367 implant fixtures. CBCT images were used to assess the presence or absence of bone defects around each implant fixture at the mesial, distal, buccal, and lingual sites. Based on the number of defect sites, the presentations of the peri-implant bone defects were categorized into 3 patterns: 1 site, 2 or 3 sites, and circumferential bone defects. Two observers independently evaluated the presence or absence of bone defects on panoramic images. The bone defect detection rate on these images was evaluated using receiver operating characteristic analysis. Results: Of the 367 implants studied, 167 (45.5%) had at least 1 site with a confirmed bone defect. The most common type of defect was circumferential, affecting 107 of the 167 implants(64.1%). Implants were most frequently placed in the mandibular molar region. The prevalence of bone defects was greatest in the maxillary premolar and mandibular molar regions. The highest kappa value was associated with the mandibular premolar region. Conclusion: The typical bone defect pattern observed was a circumferential defect surrounding the implant. The detection rate was generally higher in the molar region than in the anterior region. However, the capacity to detect partial bone defects using panoramic imaging was determined to be poor.

Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Correlation Technique (이미지 상관 기법을 이용한 풍력 발전 블레이드용 복합재료의 기공 결함 검출능)

  • Kim, Jong Il;Huh, Yong Hak;Lee, Gun Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1201-1206
    • /
    • 2013
  • Defects that occur during the manufacturing process or operation of a wind turbine blade have a great influence on its life and safety. Typically, defects such as delamination, pore, wrinkle and matrix crack are found in a blade. In this study, the detectability of the pores, a type of defect that frequently occur during manufacturing, was examined from the full field strain distribution determined with the image correlation technique. Pore defects were artificially introduced in four-ply laminated GFRP composites with $0^{\circ}/{\pm}45^{\circ}$ fiber direction. The artificial pores were introduced in consideration of their size and location. Three different-sized pores with diameter of 1, 2 and 3 mm were located on the top and bottom surface and embedded. By applying static loads of 0-200 MPa, the strain distributions over the specimen with the pore defects were determined using image correlation technique. It was found the pores with diameter exceeding 2 mm can be detected in diameter.