• 제목/요약/키워드: Defect clustering

검색결과 36건 처리시간 0.022초

퍼지 클러스터링 기반 개선된 Fuzzy Binarization 기법을 이용한 세라믹 영상에서의 결함 추출 (Defect Extraction of Ceramic Image using Fuzzy Clustering Based Enhanced Fuzzy Binarization)

  • 최철호;이진유;박헌성;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.23-26
    • /
    • 2019
  • 본 논문에서는 X-Ray 영상에서 용접한 부분의 기공이나 균열 등의 결함 영역을 추출하는 새로운 방법을 제안한다. 제안된 방법은 세라믹 X-Ray 영상에서 비등방성 확산 필터를 적용하여 영상의 잡음을 제거하고, 수직 및 수평 히스토그램을 각각 적용하여 용접 영역을 추출한 후, 최소 자승법을 적용하여 배경 밝기를 제거하고, 사다리꼴 형태의 Fuzzy Stretching기법을 적용하여 명암 값을 강조하여 결함 영역과 그 외의 영역간의 명암 대비를 강조한다. 그리고 Fuzzy C_Means 알고리즘을 적용하여 결함 영역을 세분화한 후, Fuzzy C_Means을 적용하여 생성된 클러스터들의 중심 명암 값을 이용하여 ${\alpha}_-cut$을 설정한 후에 임계구간을 구하고 영상을 이진화하여 최종적으로 결함 영역을 추출한다. 제안된 방법의 결함 추출 성능을 확인하기 위하여 세라믹 X-Ray 영상을 대상으로 실험한 결과, 기존의 방법보다 결함 영역이 정확히 추출되는 것을 확인할 수 있었다.

  • PDF

딥러닝을 이용한 PCB 필름 미박리 양품 판정 (Determination of PCB film of Un-peeling Defect Using Deep Learning)

  • 이정구;배영철
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1075-1080
    • /
    • 2022
  • 최근 인공지능 알고리즘으로 대표되는 머신러닝 및 딥러닝 알고리즘이 다양한 분야에서 예측, 분류, 군집화 등과 같은 분야에 적용하고자 하는 노력이 지속되고 있다. 이에 본 논문에서는 PCB의 보호용 필름의 미박리 상태를 디젝트론2를 이용하여 검출하는 알고리즘을 제시한다. 반사 임계각 42.8°의 조건으로 촬영된 이미지로 61장의 데이터를 기반으로, 42장의 데이터를 학습에 19장의 데이터를 검증에 사용하였다. 딥러닝을 이용한 PCB 미박리 필름 검출 결과 19장의 검증 데이터 중 16장 검출, 3장 오검출 결과를 얻었다.

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.

산업용 CT 볼륨데이터에서 템플릿 매칭을 통한 이물질 자동 검출 (Automatic Detection of Foreign Body through Template Matching in Industrial CT Volume Data)

  • 지혜림;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1376-1384
    • /
    • 2013
  • 본 논문에서는 산업용 CT 볼륨데이터에서 템플릿 매칭을 통하여 제품의 이물질을 자동 검출하는 기법을 제안한다. 제안방법은 다음과 같은 세 단계로 이루어진다. 첫째, 다운 샘플링 데이터에서 잡음제거 후 제품을 배경과 분리하고, 영상의 평균값 및 표준편차를 이용하여 초기 이물질 후보를 추출한 후, K-평균 클러스터링을 이용하여 이물질 후보를 추출한다. 둘째, 템플릿 매칭을 이용하여 제품과 유사도가 다른 이물질을 검출한다. 이 때, 검출하고자 하는 이물질의 크기에 따라 밝기값평균차이(SSD)와 조인트 엔트로피를 이용한 유사도 평가를 통하여 이물질을 검출한다. 셋째, 원 볼륨데이터에서 이물질 검출률을 개선하기 위하여 여과기법으로 제품의 이물질을 최종 검출한다. 본 제안 방법의 결과를 평가하기 위해 산업용 CT 볼륨데이터와 시뮬레이션 데이터를 사용하여 육안평가, 정확성 평가와 수행시간 측정을 수행하였다. 정확성 평가를 위하여 기존 밝기값 기반 검출 기법을 비교방법으로 사용하고, 다이스 계수 유사도를 측정하였다.

박막 소자 개발과 보론 확산 시뮬레이터 설계 (Shallow Junction Device Formation and the Design of Boron Diffusion Simulator)

  • 한명석;박성종;김재영
    • 대한공업교육학회지
    • /
    • 제33권1호
    • /
    • pp.249-264
    • /
    • 2008
  • 본 연구에서는 저 에너지 이온 주입과 이중 열처리를 통하여 박막 $p^+-n$ 접합을 형성하였고, 보론 확산 모델을 가지고 새로운 시뮬레이터를 설계하여 이온 주입과 열처리 후의 보론 분포를 재현하였다. $BF_2$ 이온을 가지고 실리콘 기판에 저 에너지 이온 주입을 하였고, 이후 RTA(Rapid Thermal Annealing)와 FA(Furnace Annealing)를 통하여 열처리 과정을 수행하였다. 시뮬레이션을 위한 확산 모델은 점결함의 생성과 재결합, BI 쌍의 생성, 보론의 활성화와 침전 현상 등을 고려하였다. FA+RTA 열처리가 RTA+FA 보다 면저항 측면의 접합 특성에서 우수한 결과를 나타내었고, 시뮬레이터에서도 동일한 결과를 나타내었다. 따라서 본 연구를 통하여 박막접합을 형성할 때 열적 효율성을 고려하면 제안된 확산 시뮬레이터와 FA+RTA 공정 방법의 유용성을 기대할 수 있다.

LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발 (Development of LiDAR-Based MRM Algorithm for LKS System)

  • 손원일;오태영;박기홍
    • 한국ITS학회 논문지
    • /
    • 제20권1호
    • /
    • pp.174-192
    • /
    • 2021
  • 카메라나 레이더에 비해 높은 인지 성능을 제공하는 라이다 센서는 높은 가격으로 의해 ADAS나 자율주행에 적용되기 어려웠으나, 최근 가격이 빠르게 낮아지고 있어 라이다를 활용한 기존 자율주행 기능 개선에 관한 기대가 높아지고 있다. 레벨3 자율주행자동차의 경우, 센서의 결함 또는 한계 등 인지시스템에 위험한 상황이 발생했을 때 운전자에게 수동모드로의 제어권 전환을 요청하며, 만약 이러한 요청에도 운전자가 반응하지 않을 경우 MRM 즉 최소위험기동을 구현하여야 한다. 본 연구에서는 이러한 배경을 바탕으로 인지 시스템에서 생기는 위험으로 인해 LKS의 정상작동이 힘든 경우에 대한, 라이다 기반의 MRM 알고리즘을 개발하였다. 본 논문의 LKS MRM 기술은 라이다에서 수집된 포인트 클라우드 데이터를 기반으로 객체 군집화를 통해 전방에 있는 차량의 이동 경로를 생성하고, 이를 자차량의 목표 경로점으로 변환하여, 카메라 기반의 LKS가 정상 작동을 할 수 없는 경우 라이다 기반의 경로 추종제어를 통해 최소위험기동을 수행한다. 제안된 알고리즘의 성능을 검증하기 위하여 HAZOP 기법을 사용하여 위험원을 식별하였고 이를 바탕으로 검증용 시나리오 3가지를 도출하여, 뵨 연구에서 구축한 시뮬레이션 환경에서 알고리즘 검증을 수행하였다. 그 결과 본 연구에서 제안한 라이다 기반 LKS MRM 알고리즘이 여러 가능한 인지시스템의 위험 상황에 대해 차선이탈을 방지하고 이를 통해 교통사고를 방지하는 것을 확인할 수 있었다.