• Title/Summary/Keyword: Defect Prediction Model

Search Result 72, Processing Time 0.029 seconds

Data Segmentation for a Better Prediction of Quality in a Multi-stage Process

  • Kim, Eung-Gu;Lee, Hye-Seon;Jun, Chi-Hyuek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.609-620
    • /
    • 2008
  • There may be several parallel equipments having the same function in a multi-stage manufacturing process, which affect the product quality differently and have significant differences in defect rate. The product quality may depend on what equipments it has been processed as well as what process variable values it has. Applying one model ignoring the presence of different equipments may distort the prediction of defect rate and the identification of important quality variables affecting the defect rate. We propose a procedure for data segmentation when constructing models for predicting the defect rate or for identifying major process variables influencing product quality. The proposed procedure is based on the principal component analysis and the analysis of variance, which demonstrates a better performance in predicting defect rate through a case study with a PDP manufacturing process.

  • PDF

Cross-Project Pooling of Defects for Handling Class Imbalance

  • Catherine, J.M.;Djodilatchoumy, S
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.11-16
    • /
    • 2022
  • Applying predictive analytics to predict software defects has improved the overall quality and decreased maintenance costs. Many supervised and unsupervised learning algorithms have been used for defect prediction on publicly available datasets. Most of these datasets suffer from an imbalance in the output classes. We study the impact of class imbalance in the defect datasets on the efficiency of the defect prediction model and propose a CPP method for handling imbalances in the dataset. The performance of the methods is evaluated using measures like Matthew's Correlation Coefficient (MCC), Recall, and Accuracy measures. The proposed sampling technique shows significant improvement in the efficiency of the classifier in predicting defects.

A Comparative Experiment of Software Defect Prediction Models using Object Oriented Metrics (객체지향 메트릭을 이용한 결함 예측 모형의 실험적 비교)

  • Kim, Yun-Kyu;Kim, Tae-Yeon;Chae, Heung-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.596-600
    • /
    • 2009
  • To support an efficient management of software verification and validation activities, many defect prediction models have been proposed based on object oriented metrics. They usually adopt logistic regression analysis, And, they state that the correctness of prediction is about 60${\sim}$70%, We performed a similar experiment with Eclipse 3.3 to check their prediction effectiveness, However, the result shows that correctness is about 40% which is much lower than the original results. We also found that univariate logistic regression analysis produces better results than multivariate logistic regression analysis.

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

Prediction of defect shape change using multiple scale modeling during wire rod rolling process (멀티 스케일 모델을 적용한 선재 공정의 미세결함 형상 변화 예측)

  • Kwak, Eun-Jeong;Kang, Gyeong-Pil;Lee, Kyung-Hoon;Son, Il-Heon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.169-172
    • /
    • 2009
  • Multiple scale modeling has been applied to predict defect shape change during the wire rod rolling process. The size difference between bloom and defect prevent using usual FEM approaches due to the enormous number of elements required to depict the defect. The newly developed multiple scale model can visualize defect shape changes during the multi stands rolling process. The defect positioned at the top and side of bloom are smoothed out but the one at the middle evolved as folding or remained as crack. This approach can be used for defect control with roll shape design and initial bloom shape.

  • PDF

Defect Severity-based Ensemble Model using FCM (FCM을 적용한 결함심각도 기반 앙상블 모델)

  • Lee, Na-Young;Kwon, Ki-Tae
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.681-686
    • /
    • 2016
  • Software defect prediction is an important factor in efficient project management and success. The severity of the defect usually determines the degree to which the project is affected. However, existing studies focus only on the presence or absence of a defect and not the severity of defect. In this study, we proposed an ensemble model using FCM based on defect severity. The severity of the defect of NASA data set's PC4 was reclassified. To select the input column that affected the severity of the defect, we extracted the important defect factor of the data set using Random Forest (RF). We evaluated the performance of the model by changing the parameters in the 10-fold cross-validation. The evaluation results were as follows. First, defect severities were reclassified from 58, 40, 80 to 30, 20, 128. Second, BRANCH_COUNT was an important input column for the degree of severity in terms of accuracy and node impurities. Third, smaller tree number led to more variables for good performance.

Defect Prediction Using Machine Learning Algorithm in Semiconductor Test Process (기계학습 알고리즘을 이용한 반도체 테스트공정의 불량 예측)

  • Jang, Suyeol;Jo, Mansik;Cho, Seulki;Moon, Byungmoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.450-454
    • /
    • 2018
  • Because of the rapidly changing environment and high uncertainties, the semiconductor industry is in need of appropriate forecasting technology. In particular, both the cost and time in the test process are increasing because the process becomes complicated and there are more factors to consider. In this paper, we propose a prediction model that predicts a final "good" or "bad" on the basis of preconditioning test data generated in the semiconductor test process. The proposed prediction model solves the classification and regression problems that are often dealt with in the semiconductor process and constructs a reliable prediction model. We also implemented a prediction model through various machine learning algorithms. We compared the performance of the prediction models constructed through each algorithm. Actual data of the semiconductor test process was used for accurate prediction model construction and effective test verification.

Software Quality Prediction based on Defect Severity (결함 심각도에 기반한 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2015
  • Most of the software fault prediction studies focused on the binary classification model that predicts whether an input entity has faults or not. However the ability to predict entity fault-proneness in various severity categories is more useful because not all faults have the same severity. In this paper, we propose fault prediction models at different severity levels of faults using traditional size and complexity metrics. They are ternary classification models and use four machine learning algorithms for their training. Empirical analysis is performed using two NASA public data sets and a performance measure, accuracy. The evaluation results show that backpropagation neural network model outperforms other models on both data sets, with about 81% and 88% in terms of accuracy score respectively.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

A Prediction of Chip Quality using OPTICS (Ordering Points to Identify the Clustering Structure)-based Feature Extraction at the Cell Level (셀 레벨에서의 OPTICS 기반 특질 추출을 이용한 칩 품질 예측)

  • Kim, Ki Hyun;Baek, Jun Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • The semiconductor manufacturing industry is managed by a number of parameters from the FAB which is the initial step of production to package test which is the final step of production. Various methods for prediction for the quality and yield are required to reduce the production costs caused by a complicated manufacturing process. In order to increase the accuracy of quality prediction, we have to extract the significant features from the large amount of data. In this study, we propose the method for extracting feature from the cell level data of probe test process using OPTICS which is one of the density-based clustering to improve the prediction accuracy of the quality of the assembled chips that will be placed in a package test. Two features extracted by using OPTICS are used as input variables of quality prediction model because of having position information of the cell defect. The package test progress for chips classified to the correct quality grade by performing the improved prediction method is expected to bring the effect of reducing production costs.