• Title/Summary/Keyword: Defect

Search Result 8,115, Processing Time 0.04 seconds

A Study on the chemical analysis of synthesized Li-AGICs with changes of intercalant contents (Intercalant 함량 변화에 따라 합성된 Li-AGICs의 화학적 분석에 관한 연구)

  • Oh, Won-Chun;Shim, Sang-Kyun
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.209-215
    • /
    • 1997
  • Li-AGICs as a anode of secondary battery were synthesized by high-pressure method as a function of the Li-contents. The characteristics of these prepared compounds were determined from the studies with X-ray diffraction method, UV/VIS spectrophotometric and differential scanning calorimeter(DSC) analysis. From the results of X-ray diffraction, it was found that the lower stage intercalation compounds were formed with increase of Li-contents. The mixed stages in these compounds were also observed. In the case of the $Li_{30wt%}$-AGIC, the compounds in the stage 1 structure were formed predominantly, but the structure of only pure stage 1 for structural defect of artificial graphite is not observed. According to UV/VIS spectrophotometric analysis, $Li_{30wt%}$-AGIC shows distinguishable energy state spectrum with the position of $R(%)_{min}$ values, but the characteristic spectra of almost all Li-AGICs are not observed. The enthalpy and entropy changes of the compounds can be obtained from the differential scanning calorimetric analysis results. From the results, it was found that exothermic and endothermic reactions of Li-AGICs are related to thermal stability of lithium between artificial graphite layers.

  • PDF

The Strategy for Diagnosis and Treatment of Isovaleric Acidemia (아이소발레릭산혈증의 신생아선별검사 후 진단 및 치료 전략)

  • Ko, Jung Min;Lee, Kyung-A
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.57-61
    • /
    • 2016
  • Isovaleric acidemia (IVA) is an autosomal recessively inherited organic acid disorder due to a defect of the enzyme isovaleryl-CoA dehydrogenase in the leucine metabolic pathway. Deficiency of this enzyme results in the accumulation of derivatives of isovaleryl-CoA. In acute illness in IVA, isovaleric acid and its derivatives accumulate and profound metabolic acidosis with ketosis, characteristic pungent body odor, hypoglycemia, and hyperammonemia can be developed. Additionally, recurrent vomiting, failure to thrive, developmental delay, epilepsy and mental retardation are chronic presenting symptoms and signs for IVA. On the result of newborn screening for inherited metabolic disorders, increased levels of isovalerylcarnitine (C5) are shown. However, C5 elevation can be accompanied with short/branched-chain acyl-CoA dehydrogenase (SBCAD) and therapy with certain antibiotics containing pivalic acid. Quantitative measurement of organic acids in urine and acylcarnitine profiles in plasma are necessary to differential diagnosis. Molecular genetic analysis of the IVD gene for IVA and ACADSB is also helpful to confirm IVA and SBCAD deficiency, respectively. Considering that IVA can be associated with significant morbidity and mortality at acute presentation of metabolic crisis, early diagnosis prior to the onset of symptoms by newborn screening enable to introduction of early treatment and prevention of acute and chronic complications.

  • PDF

Casting and Soldering Techniques of the Bronze Buddhist Gong from the Sudasa Temple Site in Suhang-ri, Pyeongchang (평창 수다사지 청동금고 주조기법과 보수 방식)

  • Huh, Ilkwon;Ahn, Songyee;Yun, Eunyoung
    • Conservation Science in Museum
    • /
    • v.15
    • /
    • pp.4-25
    • /
    • 2014
  • Chuncheon National Museum currently own a bronze Buddhist gong that was discovered in 1987 at the Sudasa Temple site of in Suhangri, Pyeongchang. Significantly, showing many casting defects and areas where was repaired, the Gong offered crucial information about the casting technique. To better understand the production technique, scientific analysis was conducted on various aspects of the gong, including its materials, moulds, chaplets, and defects. Composition analysis revealed that the gong was composed primarily of copper 71.6wt%, tin 18.2wt%, and lead 7.2wt%, along with about 1wt% of both arsenic and antimony. The lead content of the chaplets was higher than that of the gong, and the lead content was the highest in the solder, which was used to fill holes after casting. Surface analysis, based on the parting line, indicated that the gong was most likely produced with the sand casting process. Radiography and close examination of the surface disclosed various casting defects e.g., Cold Shut, Surface Folds, Misrun, and Blowholes Adjacent to Chaplets and their possible causes. The casting defects of a few holes were filled with soft solder.

National Pension Income Redistribution: The Case of Early Insureds by Net Benefit Measure (생애 순혜택으로 측정한 국민연금 초기 수급자들의 소득재분배)

  • Choi, Ki-Hong;Shin, Seung-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.4
    • /
    • pp.721-739
    • /
    • 2015
  • The importance of the old age income security will increase for an aging society due to the deepening income polarization. The National Pension(NP) is a representative Social Security scheme in charge of old age income security as well as income redistribution for the insured. Studies by Kim (2002), Kim et al. (2003), and Hong (2013) have reported the possibility of unsatisfactory income redistribution of the NP. Recently Choi (2015) attributed those results to an unnoticed defect in the benefit formula. This study is a test for the unsatisfactory income redistribution of the current National Pension using early participants who have now become pensioners. The method aggregates cohorts and combines individual history data before the year 2013 and the results of the actuarial projection model of the 2013 after the year 2014. The results are divided by measures taken. The redistribution is obviously progressive by the income replacement rate; however, it is significantly regressive when measured by the net benefit theoretically as more plausible. Considering the effect of differing lifetime contribution year among income classes, the regressive redistribution will prevail more in the future pensioners.

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Seong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

Shear bond strength of brackets bonded with different self etching primers (Self etching primer를 사용하여 부착된 교정용 브라켓의 전단결합강도의 비교)

  • Yang, Jin-Young;Kim, Min-Ji;Lim, Yong-Kyu;Lee, Dong-Yul
    • The korean journal of orthodontics
    • /
    • v.37 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • The purpose of this study was to evaluate the clinical usefulness of 4 self etching primers by measuring the shear bond strength of orthodontic brackets and examining the failure pattern of bracket-tooth interfaces. Methods: Seventy-five, defect-free, premolars were randomly assigned into five groups: control group (37% phosphoric acid + Transbond XT primer) and self etching primer treated groups (Transbond Plus self etching primer, Unifil bond, Clearfil SE bond, and Adhese). The shear bond strength was measured with a universal testing machine and the amount of residual adhesive remaining on the brackets after debonding was assessed by the adhesive remnant index (ARI). Results: The results showed that the groups conditioned with self etching primer had significantly lower shear bond strength than the control group (p < 0.05), although clinically acceptable. However, there were no significant differences in shear bond strength among the self etching primer groups (p > 0.05). Evaluation of the ARI scores indicated there was less resin remnant on the teeth in the groups conditioned with self etching primers, although not statistically significant. Conclusion: The results of this study suggest that all four of the self etching primers have shown acceptable bond strength for clinical use.

Effect of vitamin C deficiency on the rate of orthodontic tooth movement and alveolar bone remodeling (비타민 C 결핍이 guinea pig의 실험적 치아이동속도와 치조골 개조에 미치는 영향)

  • Kim, Mi-Kyung;Lee, Young-Jun;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.196-206
    • /
    • 2005
  • This study was undertaken to investigate the effect of vitamin C deficiency on the orthodontic tooth movement and bony remodeling processes. Thirty six male guinea pigs were divided on the basis of the given amount of vitamin C (normal group: 5mg/day, deficient group: 0.2mg/day) and 75gm of force was applied to the maxillary incisors. Experimental animals were sacrificed at day 0. day 1 day 3, day 5. day 7 and day 14 after force application and the amount of tooth movement was measured and tissues were studied histologically. The results showed that the amount of collagen fiber in the periodontal ligament and alveolar bone of the deficient group was less than that of the normal group. In the stretched side. the osteoblastic activity and alveolar bone formation of the normal group increased in a time dependent manner during experimental periods, but the deficient group showed less activity and formation. The amount of tooth movement in the deficiency group was more than in the normal group at day 0. day 1, day 3, day 5, and day 7. According to the above results, a deficiency of vitamin C resulted in a defect of collagen synthesis of the periodontium and inhibition of bone formation and stimulation of bone resorption with rapid tooth movement in early periods of force application.

Treatment of Class II Furcation Involvements in Humans with Bioabsorbable Guided Tissue Regeneration Barriers (2급 치근분지부 병소에서의 생분해성 차폐막의 효과)

  • Lee, Hak-Churl;Han, Seoung-Min;Seol, Yang-Jo;Lee, Chul-Woo;Um, Heung-Sik;Chang, Beom-Suk;Chung, Chong-Pyoung;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.539-553
    • /
    • 1999
  • The purpose of this 6-months study was to compare the clinical and radiographic outcomes following guided tissue regeneration treating human mandibular Class II furcation defects with a bioabsorbable BioMesh barrier(test treatment) or a nonabsorbable ePTFE barrier(control treatment). Fourteen defects in 14 patients(mean age 44 years) were treated with BioMesh barriers and ten defects in 10 patients(mean age 48 years) with ePTFE barriers. After initial therapy, a GTR procedure was done. Following flap elevation, root planing, and removal of granulation tissue, each device was adjusted to cover the furcation defect. The flaps were repositioned and sutured to complete coverage of the barriers. A second surgical procedure was performed at control sites after 4 to 6 weeks to remove the nonresorbable barrier. Radiographic and clinical examinations(plaque index, gingival index, tooth mobility, gingival margin position, pocket depth, clinical attachment level) were carried out under standardized conditions immediately before and 6 months after surgery. Furthermore, digital subtraction radiography was carried out. All areas healed uneventfully. Surgical treatment resulted in clinically and statistically equivalent changes when comparisons were made between test and control treatments. Changes in plaque index were 0.7 for test and 0.4 for control treatments; changes in gingival index were 0.9 and 0.5. In both group gingival margin position and pocket depth reduction was 1.0mm and 3.0mm; clinical attachment level gain was 1.9mm. There were no changes in tooth mobility and the bone in radiographic evaluation. No significant(p${\leq }$0.05) difference between the two membranes could be detected with regard to plaque index, gingival index, gingival margin position, pocket depth, and clinical attachment level. In conclusion, a bioabsorbable BioMesh membrane is effective in human mandibular Class II furcation defects and a longer period study is needed to fully evaluate the outcomes.

  • PDF

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF