• Title/Summary/Keyword: Deepwater petroleum

Search Result 11, Processing Time 0.017 seconds

Review of Deepwater Petroleum Exploration & Production (심해석유 탐사 및 개발의 검토)

  • Choi, Han-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.72-77
    • /
    • 2008
  • General aspects of deepwater petroleum exploration and production were identified and related technical challenges were addressed. Historical perspectives, insight, processes, and engineering applications are reviewed to enhance the design capability of the domestic offshore industry. The technical challenges and unique aspects of deepwater exploration and production were identified. The assessment of deepwater exploration, drilling, and production systems is a key stage for performing the front end engineering design (FEED). The global trends in deepwater development, including the feasibility for Korea, were reviewed.

Static performance analysis of deepwater compliant vertical access risers

  • Lou, Min;Li, Run;Wu, Wugang;Chen, Zhengshou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.970-979
    • /
    • 2019
  • Compliant Vertical Access Risers (CVARs) are compliant systems that incorporate a differentiated geometric configuration that allows the exploitation of oil and gas in deepwater fields and enables a number of operational advantages in the offshore system. One of the main features of CVAR systems is that they allow direct intervention procedures to be applied to the well bore, enabling workover operations to be performed directly from the production platform. Based on the principles of virtual work and variation, a static geometric nonlinear equation of CVARs is derived and applied in this study. The results of this study show that the two ends of the riser as well as the transition region are subject to high stress, while the positions of the floating platform exert significant effects on the geometry of the riser configuration. Compliance and buoyancy factors should be set moderately to reduce the CVAR stress. In addition, the buoyancy modules should be placed in the lower region, in order to maximize the operation advantages of CVAR.

Parameters study on lateral buckling of submarine PIP pipelines

  • Zhang, Xinhu;Duan, Menglan;Wang, Yingying;Li, Tongtong
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.99-115
    • /
    • 2016
  • In meeting the technical needs for deepwater conditions and overcoming the shortfalls of single-layer pipes for deepwater applications, pipe-in-pipe (PIP) systems have been developed. While, for PIP pipelines directly laid on the seabed or with partial embedment, one of the primary service risks is lateral buckling. The critical axial force is a key factor governing the global lateral buckling response that has been paid much more attention. It is influenced by global imperfections, submerged weight, stiffness, pipe-soil interaction characteristics, et al. In this study, Finite Element Models for imperfect PIP systems are established on the basis of 3D beam element and tube-to-tube element in Abaqus. A parameter study was conducted to investigate the effects of these parameters on the critical axial force and post-buckling forms. These parameters include structural parameters such as imperfections, clearance, and bulkhead spacing, pipe/soil interaction parameter, for instance, axial and lateral friction properties between pipeline and seabed, and load parameter submerged weight. Python as a programming language is been used to realize parametric modeling in Abaqus. Some conclusions are obtained which can provide a guide for the design of PIP pipelines.

Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves

  • Kim, D.K.;Choi, H.S.;Shin, C.S.;Liew, M.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.881-896
    • /
    • 2015
  • In this study, a method for fatigue performance estimation of deepwater steel catenary riser (SCR) under short-term vortex-induced vibration was investigated for selected S-N curves. General tendency between S-N curve capacity and fatigue performance was analysed. SCRs are generally used to transport produced oil and gas or to export separated oil and gas, and are exposed to various environmental loads in terms of current, wave, wind and others. Current is closely related with VIV and it affects fatigue life of riser structures significantly. In this regards, the process of appropriate S-N curve selection was performed in the initial design stage based on the scale of fabrication-related initial imperfections such as welding, hot spot, crack, stress concentration factor, and others. To draw the general tendency, the effects of stress concentration factor (SCF), S-N curve type, current profile, and three different sizes of SCRs were considered, and the relationship between S-N curve capacity and short-term VIV fatigue performance of SCR was derived. In case of S-N curve selection, DNV (2012) guideline was adopted and four different current profiles of the Gulf of Mexico (normal condition and Hurricane condition) and Brazil (Amazon basin and Campos basin) were considered. The obtained results will be useful to select the S-N curve for deepwater SCRs and also to understand the relationship between S-N curve capacity and short-term VIV fatigue performance of deepwater SCRs.

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Effect of gas composition on dispersion characteristics of blowout gas on offshore platform

  • Yang, Dongdong;Chen, Guoming;Shi, Jihao;Li, Xinhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.914-922
    • /
    • 2019
  • Gas composition has a significant impact on the dispersion behavior and accumulation characteristics of blowout gas. However, few public studies has investigated the corresponding effect of gas composition. Therefore, this study firstly builds the FLACS-based numerical model about an offshore drilling platform. Then several scenarios by varying the composition of blowout gas are simulated while the scenario with the composition of "Deepwater Horizon" accident is regarded as the benchmark. Furthermore, the effects of the gas composition on the flammable cloud volume, the influenced area of flammable cloud, the influenced area of hydrogen sulfide and the critical time of the hydrogen sulfide spreading to the living area are analyzed. The results demonstrate that gas composition is a driving factor for dispersion characteristics of blowout gas. All the results can give support to reduce the risk of the similar accidents incurred by real blowouts.

Wax Appearance Temperature Measurement of Opaque Oil for Flow Assurance in Subsea Petroleum Production System (해저 석유 생산시스템 내 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 측정법)

  • Lim, Jong-Se;Back, Seung-Young;Kang, Pan-Sang;Yul, Seung-Ryul;Kim, Hyo-Sang;Park, Ji-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.185-194
    • /
    • 2012
  • Deepwater oil is becoming more attractive because most onshore and shallow water oil is developing or developed. With the on-going trend to deepwater oil developments, flow assurance problems which prevent oil flow from reservoir to processing facilities are becoming an issue because deposited material can be occurred in case oil is exposed to very different environment from reservoir. Wax deposition which is one of flow assurance problems can be a major technical and economic issue because it is very sensitive to temperature. In order to predict and mitigate wax problems, the precise measurement of wax appearance temperature (WAT) which is the starting temperature of wax precipitation is very important. Various methods have been suggested for WAT measurement of opaque oil because there is no standard method for opaque oil. In this study, the WAT of opaque oil samples was measured using viscosity measurement method, differential scanning calorimetry, filter plugging method, and pressurized filter plugging method. Wax deposition test and high temperature gas chromatography analysis were applied to verify measured WAT. As a result of study, the WAT of opaque oils was successfully measured and verified. If WAT measurement methods of opaque oil related to oil characteristics is systematized using the results of this study, it can be a valuable tool for WAT measurement of opaque oil and flow assurance related to wax deposition.

Incorporating magneto-Rheological damper into riser tensioner system to restrict riser stroke in moderate-size semisubmersibles

  • Zainuddin, Zaid;Kim, Moo-Hyun;Kang, Heon-Yong;Bhat, Shankar
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.101-118
    • /
    • 2018
  • In case of conventional shallow-draft semisubmersibles, unacceptably large riser stroke was the restricting factor for dry-tree-riser-semisubmersible development. Many attempts to address this issue have focused on using larger draft and size with extra heave-damping plates, which results in a huge cost increase. The objective of this paper is to investigate an alternative solution by improving riser systems through the implementation of a magneto-rheological damper (MR Damper) so that it can be used with moderate-size/draft semisubmersibles. In this regard, MR-damper riser systems and connections are numerically modeled so that they can couple with hull-mooring time-domain simulations. The simulation results show that the moderate-size semisubmersible with MR damper system can be used with conventional dry-tree pneumatic tensioners by effectively reducing stroke-distance even in the most severe (1000-yr) storm environments. Furthermore, the damping level of the MR damper can be controlled to best fit target cases by changing input electric currents. The reduction in stroke allows smaller topside deck spacing, which in turn leads to smaller deck and hull. As the penalty of reducing riser stroke by MR damper, the force on the MR-damper can significantly be increased, which requires applying optimal electric currents.

Fully coupled multi-hull/mooring/riser/hawser time domain simulation of TLP-TAD system with MR damper

  • Muhammad Zaid Zainuddin;Moo-Hyun Kim;Chungkuk Jin;Shankar Bhat
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.401-421
    • /
    • 2023
  • Reducing hawser line tensions and dynamic responses to a certain level is of paramount importance as the hawser lines provide important structural linkage between 2 body TLP-TAD system. The objective of this paper is to demonstrate how MR Damper can be utilized to achieve this. Hydrodynamic coefficients and wave forces for two bodies including second-order effects are obtained by 3D diffraction/radiation panel program by potential theory. Then, multi-hull-riser-mooring-hawser fully-coupled time-domain dynamic simulation program is applied to solve the complex two-body system's dynamics with the Magneto-Rheological (MR) Damper modeled on one end of hawser. Since the damping level of MR Damper can be changed by inputting different electric currents, various simulations are conducted for various electric currents. The results show the reductions in maximum hawser tensions with MR Damper even for passive control cases. The results also show that the hawser tensions and MR Damper strokes are affected not only by input electric currents but also by initial mooring design. Further optimization of hawser design with MR Damper can be done by active MR-Damper control with changing electric currents, which is the subject of the next study.

Subsea Responses to the BP Oil Spill in the Gulf of Mexico (멕시코만의 BP사 오일유출 해저 대책에 대한 분석)

  • Choi, Han-Suk;Lee, Seung-Keon;Do, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.90-95
    • /
    • 2011
  • On April 20, 2010, a well control event allowed hydrocarbon (oil and gas) to escape from the Macondo well onto Deepwater Horizon (DWH), resulting in an exploration and fire on the rig. While 17 people were injured, 11 others lost their lives. The fire continued for 36 hours until the rig sank. Hydrocarbons continued to flow out from the reservoir through the well bore and blowout preventer (BOP) for 87 days, causing an unprecedented oil spill. Beyond Petroleum (BP) and the US federal government tried various methods to prevent the oil spill and to capture the spilled oil. The corresponding responses were very challenging due to the scale, intensity, and duration of the incident that occurred under extreme conditions in terms of pressure, temperature, and amount of flow. On July 15, a capping stack, which is another BOP on top of the existing BOP, was successfully installed, and the oil spill was stopped. After several tests and subsea responses, the well was permanently sealed by a relief well and a bottom kill on September 19. This paper analyzes the subsea responses and engineering efforts to capture the oil, stop the leaking, and kill the subsea well. During the investigation and analysis of subsea responses, information was collected and data bases were established for future accident prevention and the development of subsea engineering.