• Title/Summary/Keyword: Deepwater

Search Result 94, Processing Time 0.025 seconds

Fully coupled multi-hull/mooring/riser/hawser time domain simulation of TLP-TAD system with MR damper

  • Muhammad Zaid Zainuddin;Moo-Hyun Kim;Chungkuk Jin;Shankar Bhat
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.401-421
    • /
    • 2023
  • Reducing hawser line tensions and dynamic responses to a certain level is of paramount importance as the hawser lines provide important structural linkage between 2 body TLP-TAD system. The objective of this paper is to demonstrate how MR Damper can be utilized to achieve this. Hydrodynamic coefficients and wave forces for two bodies including second-order effects are obtained by 3D diffraction/radiation panel program by potential theory. Then, multi-hull-riser-mooring-hawser fully-coupled time-domain dynamic simulation program is applied to solve the complex two-body system's dynamics with the Magneto-Rheological (MR) Damper modeled on one end of hawser. Since the damping level of MR Damper can be changed by inputting different electric currents, various simulations are conducted for various electric currents. The results show the reductions in maximum hawser tensions with MR Damper even for passive control cases. The results also show that the hawser tensions and MR Damper strokes are affected not only by input electric currents but also by initial mooring design. Further optimization of hawser design with MR Damper can be done by active MR-Damper control with changing electric currents, which is the subject of the next study.

Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves

  • Taegeon Hwang;Seung-Chul Seo;Hoyeong Jin;Hyeseong Oh;Woo-Dong Lee
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.149-163
    • /
    • 2024
  • This paper employs the third-generation simulating waves nearshore (SWAN) ocean wave model to estimate and analyze storm waves induced by Typhoon Bolaven, focusing on its impact along the west coast and Jeju Island of Korea. Utilizing reanalyzed meteorological data from the Japan Meteorological Agency meso scale model (JMA-MSM), the study simulated storm waves from Typhoon Bolaven, which maintained its intensity up to high latitudes as it approached the Korean Peninsula in 2012. Validation of the SWAN model against observed wave data demonstrated a strong correlation, particularly in regions where wind speeds exceeded 20 m/s and wave heights surpassed 5 m. Results indicate significant storm wave heights across Jeju Island and Korea's west and southwest seas, with coastal grid points near islands recording storm wave heights exceeding 90% of the 50-year return period design wave heights. Notably, specific grid points near islands in the northern West Sea and southwest Jeju Island estimated storm wave heights at 90.22% and 91.48% of the design values, respectively. The paper highlights the increased uncertainty and vulnerability in coastal disaster predictions due to event-driven typhoons and emphasizes the need for enhanced accuracy and speed in typhoon wave predictions amid the escalating climate crisis.

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정 -)

  • Shin Seung-Ho;Hong Key-yong;Choi Hark-Sun;Hashimoto Noriaki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.211-218
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition cf deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result mused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation. The modified WAM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

  • PDF

A Study on the Selection of Subject Vessel for Development of Oil Recovery Equipment for Small Vessel (소형선박용 기름회수장비 개발을 위한 대상선박 선정에 관한 연구)

  • Lim, Chae-Hyun;Han, Won-Heui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.604-609
    • /
    • 2012
  • Our country has experienced some difficulties with clean up operation of massive marine oil pollution due to the lack of oil spill response equipments. And there was the case that a fishing vessel performed clean up operation had not received any proper payments because of its inefficient oil spill response operation. Thus, it is important to develop an efficient oil recovery equipment for small vessel and adopt it as a part of oil pollution prevention policy. These efforts could prepare oil spill response equipment in advance and use a fishing vessel registered in the affected area by massive marine oil pollution. Therefore, this study examines and adopts a suitable subject vessels as a first step for developing oil recovery system fitting with small vessels for national use.

Design of Truncated Mooring Line Model in KRISO's Deepwater Ocean Engineering Basin

  • Jung, Hyun-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Hwang, Sung-Chul;Sung, Hong-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.227-238
    • /
    • 2015
  • The present work was an attempt to investigate the applicability of truncated mooring systems to KRISO's deep ocean engineering basin (DOEB) with ratios of 1:100, 1:60, and 1:50. The depth of the DOEB is 15 m. Therefore, the corresponding truncated depths for this study were equal to 1500 m, 900 m, and 750 m. The investigation focused on both the static and dynamic characteristics of the mooring system. It was shown, in a static pull-out test, that the restoring force of a FPSO vessel could be modified to a good level of agreement for all three truncation cases. However, when the radius of the mooring site was reduced according to the truncation factor, the surge motion response during a free-decay test showed a significant difference from the full-depth model. However, the reduction of this discrepancy was achieved by increasing the radius up to its maximum possible value while considering the size of the DOEB. Especially, in terms of the time period, the difference was reduced from 24.0 to 5.3 s for a truncation ratio of 1:100, 54.1 to 8.6 s for a truncation ratio of 1:60, and 31.7 to 3.9 s for a truncation ratio of 1:50. As a result, the study verified the applicability of the truncated mooring system to the DOEB, and therefore it could represent the full-depth mooring system relatively well in terms of the static and dynamic conditions.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Subsea Responses to the BP Oil Spill in the Gulf of Mexico (멕시코만의 BP사 오일유출 해저 대책에 대한 분석)

  • Choi, Han-Suk;Lee, Seung-Keon;Do, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.90-95
    • /
    • 2011
  • On April 20, 2010, a well control event allowed hydrocarbon (oil and gas) to escape from the Macondo well onto Deepwater Horizon (DWH), resulting in an exploration and fire on the rig. While 17 people were injured, 11 others lost their lives. The fire continued for 36 hours until the rig sank. Hydrocarbons continued to flow out from the reservoir through the well bore and blowout preventer (BOP) for 87 days, causing an unprecedented oil spill. Beyond Petroleum (BP) and the US federal government tried various methods to prevent the oil spill and to capture the spilled oil. The corresponding responses were very challenging due to the scale, intensity, and duration of the incident that occurred under extreme conditions in terms of pressure, temperature, and amount of flow. On July 15, a capping stack, which is another BOP on top of the existing BOP, was successfully installed, and the oil spill was stopped. After several tests and subsea responses, the well was permanently sealed by a relief well and a bottom kill on September 19. This paper analyzes the subsea responses and engineering efforts to capture the oil, stop the leaking, and kill the subsea well. During the investigation and analysis of subsea responses, information was collected and data bases were established for future accident prevention and the development of subsea engineering.

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정-)

  • Shin, Seung-Ho;Hong, Key-Yong;Choi, Hak-Sun;Noriaki Hashimoto
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.557-564
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition of deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result caused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation The modified W AM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

Understanding of Offshore Drilling System and Trend Analysis (해양 시추시스템 구성요소에 대한 이해 및 동향분석)

  • Woo, Nam-Sub;Kwon, Jae-Ki;Park, Jong-Myung;Kim, Sang-Shik;Kim, Young-Ju
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • Offshore drilling refers to a mechanical process where a wellbore is drilled through a seabed. It is typically carried out in order to explore for and subsequently extract petroleum which lies in rock formations beneath the seabed. There are many different type of facilities from which offshore drilling operations take place. These include bottom founded drilling rigs, combined drilling and production facilities either bottom founded or floating platforms, and deepwater mobile offshore drilling units including semi-submersibles and drillships. These are capable of operating in water depths up to 3,000 m. In this paper, we introduce the drilling system, which is mounted on the offshore drilling facilities.

Numerical Study on the Coupled Responses of the Steel Lazy Wave Riser (SLWR) Based on the Basis of Design and Moored FPSO (BoD 기반의 Steel Lazy Wave Riser(SLWR)와 계류된 FPSO와의 연성해석에 관한 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Park, Byeong-Won;Oh, Seung-Hoon;Jung, Jae-Hwan;Jung, Dongho
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.344-352
    • /
    • 2019
  • A coupled analysis was performed between the riser to develop oil and gas in ultra-deepwater and the moored floating body. In general, the safety of the riser is conservatively evaluated by considering the maximum offset excluding the coupled analysis with the floating body. In this study, the safety of the riser was analyzed by considering the coupled motion analysis of the moored floating body. The riser is considered steel lazy wave riser (SLWR) applied in the deep sea, and the floating body is determined to FPSO. The methodology was presented on coupled and uncoupled analysis. The coupled effects were analyzed according to the incident wave headings in intact and damaged conditions of mooring lines. The tension of mooring lines, the motion of the floating body, and riser responses were analyzed according to the loading conditions.