• Title/Summary/Keyword: Deeply Underground Subway Station(DUSS)

Search Result 5, Processing Time 0.022 seconds

ANALYSIS OF SMOKE SPREAD EFFECT DUE TO THE FIRE STRENGTH IN UNDERGROUND SUBWAY-STATION (대심도 역사의 화재강도에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Hag-Beom;Kim, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.373-378
    • /
    • 2011
  • As the number of deeply-underground subway station(DUSS) increases, the safety measures for DUSS have been requested. In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread speed with the different fire strength. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and total of 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire strength. in order to enhance the efficiency of calculation, parallel processing by MPI was employed and large eddy simulation method in FDS code was adopted.

  • PDF

THE STUDY ON THE CHARACTERISTICS OF FIRE DRIVEN SMOKE-FLOW FOR DIFFERENT FIRE-LOCATION IN DEEPLY UNDERGROUND SUBWAY STATION (대심도 지하역사에서 화원 위치에 따른 연기거동 특징 연구)

  • Kim, H.B.;Jang, Y.J.;Lee, C.H.;Jung, W.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.202-207
    • /
    • 2009
  • In this study, Numerical simulations were performed to analyze the characteristics of fire driven smoke flow for different location of fire source in the deeply underground subway station with using FDS code. The fire driven smoke-flow which was simulated by using Parallel Computational Method for fast calculation and LES for turbulence model. In this research, the fire location to obstruct a suitable egress from the fire disaster were discussed.

  • PDF

THE COMPARISON ON THE CHARACTERISTIC OF THE FIRE DRIVEN SMOKE-FLOW FOR THE PLATFORM TYPES IN THE DEEPLY UNDERGROUND SUBWAY STATION (대심도 지하철 승강장의 종류별 연기전파특성 비교고찰)

  • Kim, H.B.;Jang, Y.J.;Lee, D.H.;Jung, W.S.;Whang, H.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.505-507
    • /
    • 2010
  • In this paper, the comparison on the fire driven smoke flow for platform types was conducted in the Deeply Underground Subway Station. Soongsil-University station (47m depth) as a bank type platform and Mandeok Station as a island type platform were selected for fire numerical simulation. The characteristics of fire driven smoke-flows were analyzed from the simulation results. The proper plan of evacuation against fire for each type was considered through the results.

  • PDF

Analysis of Smoke Spread Effect Due to The Fire Location in Underground Subway-Station (대심도 역사의 화재위치에 따른 연기확산 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Jin-Ho;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2885-2890
    • /
    • 2011
  • Simulation study were performed for fire location effect on the smoke spread in the deeply-underground subway station(DUSS). In this research, Shingumho station (The line # 5, Depth: 46m) has been selected as case-study for the analysis of smoke-spread effect with the different fire location. Field test data measured for actual fan in DUSS was applied as a condition of a simulation. The whole station was covered in this analysis and 4 million grids were generated for this simulation. The fire driven flow was analyzed case by case to compare the smoke-spread effect according to the fire location. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and LES(large eddy simulation) method in FDS code was adopted.

  • PDF

Simulation of Ventilation Capability Effect on The Smoke Spread in Railway Station (제연 팬 용량이 철도역사 연기확산에 미치는 영향 분석)

  • Jang, Yong-Jun;Koo, In-Hyuk;Kim, Hag-Beom;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.7-13
    • /
    • 2011
  • Simulation study were performed for ventilation capability effect on the smoke spread in the deeply-underground subway station(DUSS). Singeumho station(The line # 5, Depth: 46m) was modeled and were analyzed for smoke-spread speed difference between the originally-designed-ventilation-capacity and the measured-ventilation-capacity. Field test data for actual fan in DUSS was applied as a boundary condition of a simulation. The whole station was covered in this analysis and total of 4 million grids were generated for this simulation. The fire-driven flow was analyzed case by case to compare the smoke-spread effects. In order to enhance the efficiency of calculation, parallel processing by MPI was employed and large eddy simulation method in FDS code was adopted.

  • PDF