• Title/Summary/Keyword: Deep-blue host

Search Result 12, Processing Time 0.031 seconds

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

Study of Deep Blue Organic Light-Emitting Diodes Using Doped BCzVBi with Various Blue Host Materials

  • Kim, Tae-Gu;Oh, Hwan-Sool;Kim, You-Hyun;Kim, Woo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.85-88
    • /
    • 2010
  • Deep blue organic light emitting diodes (OLEDs) were fabricated using 5 wt.% doped BCzVBi with various blue host materials such as NPB, DPVBi, MADN and TPBi. A blue OLED device, using DPVBi as host material, was constructed via NPB ($500\;{\AA}$) / DPVBi:BCzVBi ($200\;{\AA}$) / Bphen ($300\;{\AA}$) / LiF ($20\;{\AA}$) / Al ($1,000\;{\AA}$) and it shows a maximum luminescence of $4,838\;cd/m^2$, a current density of $32.7\;mA/cm^2$, a luminous efficiency of 3.3 cd/A and CIExy coordinates of (0.19, 0.15) at 4.5 V whereas the luminous efficiencies and CIExy coordinates of other blue OLEDs using NPB, MADN and TPBi as host materials have 1.1, 2.6 and 2.0 cd/A and (0.15, 0.11), (0.15, 0.10) and (0.15, 0.10), respectively. Energy transfer mechanisms between BCzVBi and its host materials were discussed with an energy band structure of host materials.

Highly efficient deep-blue electroluminescence using doped PCVtPh with a new host material

  • Park, Jeong-Keun;Lee, Kum-Hee;Kim, Seul-Ong;Park, Jung-Sun;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.775-778
    • /
    • 2009
  • Novel blue host material, 4,4'-(dinaphthalen-2-yl)-1,1'-binaphthyl (DNBN), was designed and synthesized for OLEDs. In order to test the electroluminescent properties of DNBN, DNBN was used as the host materials for a blue emitter, PCVtPh. The device exhibited deep-blue emission with the CIEx,y coordinates (x=0.15, y=0.08) at 8.0 V, a luminous efficiency of 1.66 cd/A, a power efficiency of 0.77 lm/W and an external quantum efficiency of 2.30 % at 20 mA/$cm^2$, respectively.

  • PDF

Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials

  • Kim, Min-Ji;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1639-1646
    • /
    • 2014
  • A series of novel fused-ring spiro compounds, spiro[benzo[ij]tetraphene-7,9'-fluorene] (SBTF) derivatives containing an end-capping aryl substituent at both the C3 and C10-positions hasbeen designed and synthesized via multi-step Suzuki coupling reactions. 3-(1-Naphthyl)-10-phenylSBTF (1N-PSBTF), 3-(2-naphthyl)-10-phenylSBTF (2N-PSBTF) and 3-[4-(1-naphthyl)phenyl]-10-phenylSBTF (NP-PSBTF) showed improved glass transition temperatures ($T_g$) with good thermal stability. Their photophysical, electrochemical, and electroluminescent properties were investigated and were used to construct blue organic light emission diodes (OLEDs). The typical OLED devices showed excellent performance; the NP-PSBTF-based device exhibited highly efficient deep blue-light emission with a maximum efficiency of 5.27 cd/A (EQE, 4.63%) with CIE (x = 0.133, y = 0.144). According to these characteristics, these deep-blue light emitting materials have sufficient potential for fluorescent OLED applications.

Deep Blue Fluorescent Host Materials Based on a Novel Spiro[benzo[c]fluorene-7,9'-fluorene] Core Structure with Side Aromatic Wings

  • Lee, In-Ho;Seo, Jeong-A;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2287-2294
    • /
    • 2012
  • Deep blue fluorescent host materials based on a novel spiro[benzo[c]fluorene-7,9'-fluorene] core structure with side aromatic wings in the 5- and 9-positions, namely, 5,9-di(naphthalen-2-yl)spiro[benzo[c]fluorene-7,9'-fluorene] (DN-SBFF), 5,9-bis(4-t-butylphenyl)spiro[benzo[c]fluorene-7,9'-fluorene] (BP-SBFF), and 5,9-bis(4-fluorophenyl)spiro[benzo[c]fluorene-7,9'-fluorene] (FP-SBFF), were designed and successfully prepared using the Suzuki reaction. The physical properties of these materials and their EL characteristics as blue host materials doped with N,N,N',N'-tetraphenylspiro[benzo[c]fluorene-7,9'-fluorene]-5,9-diamine (TPA-SBFF) were investigated. The device used comprised ITO/N,N'-diphenyl-N,N'-bis[4-(phenyl-m-tolyl-amino)phenyl]-biphenyl-4,4'-diamine (DNTPD)/N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB)/(FP-SBFF):dopant x%/tris(8-hydroxyquinoline)aluminum ($Alq_3$)/LiF. The device obtained using FP-SBFF doped with TPA-SBFF showed high color purity (0.13, 0.18) and an efficiency of 6.61 cd/A at 7 V.

Fluorescent White OLEDs with a High Color-rendering Index Using a Silicon-Cored Anthracene Derivative as a Blue Host

  • Kwak, Jeong-Hun;Lyu, Yi-Yeol;Lee, Hyun-Koo;Char, Kook-Heon;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.123-127
    • /
    • 2010
  • Fluorescent white organic light-emitting diodes showing high color-rendering indices (CRIs) of up to 81 was demonstrated, with a silicon-cored anthracene derivative (PATSPA) doped with DPAVBi utilized as the deep-blue host and dye materials, and the commercial dyes rubrene and DCM2 utilized as the orange- and red-light-emitting dyes. The devices, consisting of three emissive layers, showed bright-white-light emission, but the ratio of the blue peak to the orange and red peaks changed with the current density and the thickness of the blue emissive layer. A high CRI was achieved with the use of a deep-blue emitter doped in a novel host and by optimizing the blue-layer thickness. The device with a blue-layer thickness of 10 nm showed the Commission Internationale de l'Eclairage (CIE) color coordinate of (0.33, 0.35), a high CRI of 81, and a moderate external quantum efficiency of 2% at a current density of $2.5\;mA/cm^2$.

New Fluorescent Blue OLED Host and Dopant Materials Based on the Spirobenzofluorene

  • Lee, In-Ho;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1475-1482
    • /
    • 2011
  • New spiro[benzo[c]fluorene-7,9'-fluorene] (SBFF)-based blue host materials, 9-phenyl-SBFF (BH-4P) and 5,9-diphenyl-SBFF (BH-6DP), were successfully prepared by spiro-formation of 9-phenyl-7H-benzo[c]fluoren-7-one with 2-bromobiphenyl via lithiation and reaction of 5,9-dibromo-SBFF with phenylboronic acid through the Suzuki reaction, respectively. Diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]-amine (BD-1) and N,N-diphenyl-N',N'-diphenyl-SBFF-5,9-diamine (BD-6DPA) were used as dopant materials. Blue OLEDs with the configuration ITO/N,N'-bis-[4-(di-m-tolylamino)phenyl]-N,N'-diphenylbiphenyl-4,4'-diamine (DNTPD)/bis[N-(1-naphthyl)-N-phenyl]benzidine (NPB)/host:5% dopant/SFC-137/Al-LiF were prepared from the two host materials doped with BD-1 and BD-6DPA dopants and the devices composed of BH-4P and BH-6DP doped with BD-6DPA showed blue EL spectra at 458 and 463 nm at 7 V and luminance efficiencies of 4.58 and 4.88 cd/A, respectively.

Synthesis and Characterization of New Anthracene-Based Blue Host Material

  • So, Ki-Ho;Park, Hyun-Tae;Shin, Sung-Chul;Lee, Sang-Gyeong;Lee, Dong-Hui;Lee, Kyeong-Hoon;Oh, Hyeong-Yun;Kwon, Soon-Ki;Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1611-1615
    • /
    • 2009
  • We designed new anthracene-based host material to increase color purity as well as device efficiency. The new blue host, 9,10-bis(2,4-dimethylphenyl)anthracene (BDA), has highly twisted structure and wide band gap due to ortho interaction between anthracene and introduced 2,4-dimethylphenyl substituents. BDA exhibited deep blue fluorescence in solution (${\lambda}_{max}$ = 410 nm) and in solid state (${\lambda}_{max}$ = 429 nm), respectively, with the wide optical band gap (E = 3.12 eV). Blue-light-emitting OLEDs using obtained host and 2% Flu-DPAN as emitter showed 8 cd/A of high efficiency as well as high color purity [CIE coordinates = (0.15, 015)].

Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave (초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석)

  • Yu, Hong-Jeong;Chung, Won-Keun;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.325-329
    • /
    • 2011
  • $Ir(pmb)_{3}$(Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-$C,C^{2'}$ ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of $Ir(pmb)_{3}$. The ultrasonic wave enhanced the reaction yield of $Ir(pmb)_{3}$ because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of $Ir(pmb)_{3}$ was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-$Ir(pmb)_{3}$ which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.

A deep and High-resolution Study of Ultra-diffuse Galaxies in Distant Massive Galaxy Clusters

  • Lee, Jeong Hwan;Kang, Jisu;Jang, In Sung;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.38.4-38.4
    • /
    • 2019
  • Ultra-diffuse galaxies (UDGs) are intriguing in the sense that they are much larger than dwarf galaxies but have much lower surface brightness than normal galaxies. To date, UDGs have been found only in the local universe. Taking advantage of deep and high-resolution HST images, we search for UDGs in massive galaxy clusters in the distant universe. In this work, we present our search results of UDGs in three massive clusters of the Hubble Frontier Fields: Abell 2744 (z=0.308), Abell S1063 (z=0.348), and Abell 370 (z=0.375). These clusters are the most distant and massive among the host systems of known UDGs. The color-magnitude diagrams of these clusters show that UDGs are mainly located in the faint end of the red sequence. This means that most UDGs in these clusters consist of old stars. Interestingly, we found a few blue UDGs, which implies that they had recent star formation. The radial number densities of UDGs clearly decrease in the central region of the clusters in contrast to those of bright galaxies which keep rising. This implies that a large fraction of UDGs in the central region were tidally disrupted. These features are consistent with those of UDGs in nearby galaxy clusters. We estimate the total number of UDGs (N(UDG)) in each cluster. The abundance of UDGs shows a tight relation with the virial masses (M_200) of thier host systems: M_200 \propto N(UDG)^(1.01+/-0.05). This slope is found to be very close to one, indicating that efficiency of UDGs does not significantly depend on the host environments. Furthermore, estimation of dynamical masses of UDGs indicates that most UDGs have dwarf-like masses (M_200 < 10^11 M_Sun), but a few UDGs have $L{\ast}$-like masses (M_200 > 10^11 M_Sun). In summary, UDGs in distant massive clusters are found to be similar to those in the local universe.

  • PDF