• 제목/요약/키워드: Deep-autoencoder

검색결과 104건 처리시간 0.029초

Generation of Masked Face Image Using Deep Convolutional Autoencoder (컨볼루션 오토인코더를 이용한 마스크 착용 얼굴 이미지 생성)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제26권8호
    • /
    • pp.1136-1141
    • /
    • 2022
  • Researches of face recognition on masked faces have been increasingly important due to the COVID-19 pandemic. To realize a stable and practical recognition performance, large amount of facial image data should be acquired for the purpose of training. However, it is difficult for the researchers to obtain masked face images for each human subject. This paper proposes a novel method to synthesize a face image and a virtual mask pattern. In this method, a pair of masked face image and unmasked face image, that are from a single human subject, is fed into a convolutional autoencoder as training data. This allows learning the geometric relationship between face and mask. In the inference step, for a unseen face image, the learned convolutional autoencoder generates a synthetic face image with a mask pattern. The proposed method is able to rapidly generate realistic masked face images. Also, it could be practical when compared to methods which rely on facial feature point detection.

An Experimental Study on AutoEncoder to Detect Botnet Traffic Using NetFlow-Timewindow Scheme: Revisited (넷플로우-타임윈도우 기반 봇넷 검출을 위한 오토엔코더 실험적 재고찰)

  • Koohong Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제33권4호
    • /
    • pp.687-697
    • /
    • 2023
  • Botnets, whose attack patterns are becoming more sophisticated and diverse, are recognized as one of the most serious cybersecurity threats today. This paper revisits the experimental results of botnet detection using autoencoder, a semi-supervised deep learning model, for UGR and CTU-13 data sets. To prepare the input vectors of autoencoder, we create data points by grouping the NetFlow records into sliding windows based on source IP address and aggregating them to form features. In particular, we discover a simple power-law; that is the number of data points that have some flow-degree is proportional to the number of NetFlow records aggregated in them. Moreover, we show that our power-law fits the real data very well resulting in correlation coefficients of 97% or higher. We also show that this power-law has an impact on the learning of autoencoder and, as a result, influences the performance of botnet detection. Furthermore, we evaluate the performance of autoencoder using the area under the Receiver Operating Characteristic (ROC) curve.

Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function (가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템)

  • Donghyeon Kim;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • 제28권1호
    • /
    • pp.6-13
    • /
    • 2024
  • This paper proposes an approach to detect abnormal data in automotive controller area network (CAN) using an unsupervised learning model, i.e. autoencoder and Gaussian kernel density estimation function. The proposed autoencoder model is trained with only message ID of CAN data frames. Afterwards, by employing the Gaussian kernel density estimation function, it effectively detects abnormal data based on the trained model characterized by the optimally determined number of frames and a loss threshold. It was verified and evaluated using four types of attack data, i.e. DoS attacks, gear spoofing attacks, RPM spoofing attacks, and fuzzy attacks. Compared with conventional unsupervised learning-based models, it has achieved over 99% detection performance across all evaluation metrics.

Autoencoder Based Fire Detection Model Using Multi-Sensor Data (다중 센서 데이터를 활용한 오토인코더 기반 화재감지 모델)

  • Taeseong Kim;Hyo-Rin Choi;Young-Seon Jeong
    • Smart Media Journal
    • /
    • 제13권4호
    • /
    • pp.23-32
    • /
    • 2024
  • Large-scale fires and their consequential damages are becoming increasingly common, but confidence in fire detection systems is waning. Recently, widely-used chemical fire detectors frequently generate lots of false alarms, while video-based deep learning fire detection is hampered by its time-consuming and expensive nature. To tackle these issues, this study proposes a fire detection model utilizing an autoencoder approach. The objective is to minimize false alarms while achieving swift and precise fire detection. The proposed model, employing an autoencoder methodology, can exclusively learn from normal data without the need for fire-related data, thus enhancing its adaptability to diverse environments. By amalgamating data from five distinct sensors, it facilitates rapid and accurate fire detection. Through experiments with various hyperparameter combinations, the proposed model demonstrated that out of 14 scenarios, only one encountered false alarm issues. Experimental results underscore its potential to curtail fire-related losses and bolster the reliability of fire detection systems.

TCN-USAD for Anomaly Power Detection (이상 전력 탐지를 위한 TCN-USAD)

  • Hyeonseok Jin;Kyungbaek Kim
    • Smart Media Journal
    • /
    • 제13권7호
    • /
    • pp.9-17
    • /
    • 2024
  • Due to the increase in energy consumption, and eco-friendly policies, there is a need for efficient energy consumption in buildings. Anomaly power detection based on deep learning are being used. Because of the difficulty in collecting anomaly data, anomaly detection is performed using reconstruction error with a Recurrent Neural Network(RNN) based autoencoder. However, there are some limitations such as the long time required to fully learn temporal features and its sensitivity to noise in the train data. To overcome these limitations, this paper proposes the TCN-USAD, combined with Temporal Convolution Network(TCN) and UnSupervised Anomaly Detection for multivariate data(USAD). The proposed model using TCN-based autoencoder and the USAD structure, which uses two decoders and adversarial training, to quickly learn temporal features and enable robust anomaly detection. To validate the performance of TCN-USAD, comparative experiments were performed using two building energy datasets. The results showed that the TCN-based autoencoder can perform faster and better reconstruction than RNN-based autoencoder. Furthermore, TCN-USAD achieved 20% improved F1-Score over other anomaly detection models, demonstrating excellent anomaly detection performance.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • 제28권3호
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance (음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합)

  • Kao, Chao Yuan;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • 제38권6호
    • /
    • pp.670-677
    • /
    • 2019
  • As the presence of background noise in acoustic signal degrades the performance of speech or acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and MultiTask AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent MTAE (RMTAE) models for robust speech recognition.

Side-Channel Archive Framework Using Deep Learning-Based Leakage Compression (딥러닝을 이용한 부채널 데이터 압축 프레임 워크)

  • Sangyun Jung;Sunghyun Jin;Heeseok Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제34권3호
    • /
    • pp.379-392
    • /
    • 2024
  • With the rapid increase in data, saving storage space and improving the efficiency of data transmission have become critical issues, making the research on the efficiency of data compression technologies increasingly important. Lossless algorithms can precisely restore original data but have limited compression ratios, whereas lossy algorithms provide higher compression rates at the expense of some data loss. There has been active research in data compression using deep learning-based algorithms, especially the autoencoder model. This study proposes a new side-channel analysis data compressor utilizing autoencoders. This compressor achieves higher compression rates than Deflate while maintaining the characteristics of side-channel data. The encoder, using locally connected layers, effectively preserves the temporal characteristics of side-channel data, and the decoder maintains fast decompression times with a multi-layer perceptron. Through correlation power analysis, the proposed compressor has been proven to compress data without losing the characteristics of side-channel data.

Analog Satellite Receiver Oriented Aerial Image Enhancement Method using Deep Auto Encoders (Deep Auto Encoder 를 이용한 아날로그 위성 수신기 지향 항공 영상 향상 방법)

  • De Silva, K. Dilusha Malintha;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.52-54
    • /
    • 2022
  • Aerial images are being one of the important aspects of satellite imagery, delivers effective information on landcovers. Their special characteristics includes the viewpoint from space which clarifies data related to land examining processes. Aerial images taken by satellites employed radio waves to wirelessly transmit images to ground stations. Due to transmission errors, images get distorted and unable to perform in landcover examining. This paper proposes an aerial image enhancement method using deep autoencoders. A properly trained autoencoder can enhance an aerial image to a considerable level of improvement. Results showed that the achieved enhancement is better than that was obtained from traditional image denoising methods.