The Dynamic Adaptive Streaming over HTTP(DASH) is envisioned to evolve to meet an increasing demand on providing seamless video streaming services in the near future. The DASH performance heavily depends on the client's adaptive quality selection algorithm that is not included in the standard. The existing conventional algorithms are basically based on a procedural algorithm that is not easy to capture and reflect all variations of dynamic network and traffic conditions in a variety of network environments. To solve this problem, this paper proposes a novel quality selection mechanism based on the Deep Q-Network(DQN) model, the DQN-based DASH Adaptive Bitrate(ABR) mechanism. The proposed mechanism adopts a new reward calculation method based on five major performance metrics to reflect the current conditions of networks and devices in real time. In addition, the size of the consecutive video segment to be downloaded is also considered as a major learning metric to reflect a variety of video encodings. Experimental results show that the proposed mechanism quickly selects a suitable video quality even in high error rate environments, significantly reducing frequency of quality changes compared to the existing algorithm and simultaneously improving average video quality during video playback.
The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.
Khuong G. T. Diep;Viet-Tuan Le;Tae-Seok Kim;Anh H. Vo;Yong-Guk Kim
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2023년도 추계학술발표대회
/
pp.624-627
/
2023
Unmanned aerial vehicles are gaining in popularity with the development of science and technology, and are being used for a wide range of purposes, including surveillance, rescue, delivery of goods, and data collection. In particular, the ability to avoid obstacles during navigation without human oversight is one of the essential capabilities that a drone must possess. Many works currently have solved this problem by implementing deep reinforcement learning (DRL) model. The essential core of a DRL model is reward function. Therefore, this paper proposes a new reward function with appropriate action space and employs dueling double deep Q-Networks to train a drone to navigate in indoor environment without collision.
강화학습에서 근사함수로써 사용되는 딥 인공 신경망은 이론적으로도 실제와 같은 근접한 결과를 나타낸다. 다양한 실질적인 성공 사례에서 시간차 학습(TD) 은 몬테-칼로 학습(MC) 보다 더 나은 결과를 보여주고 있다. 하지만, 일부 선행 연구 중에서 리워드가 매우 드문드문 발생하는 환경이거나, 딜레이가 생기는 경우, MC 가 TD 보다 더 나음을 보여주고 있다. 또한, 에이전트가 환경으로부터 받는 정보가 부분적일 때에, MC가 TD보다 우수함을 나타낸다. 이러한 환경들은 대부분 5-스텝 큐-러닝이나 20-스텝 큐-러닝으로 볼 수 있는데, 이러한 환경들은 성능-퇴보를 낮추는데 도움 되는 긴 롤-아웃 없이도 실험이 계속 진행될 수 있는 환경들이다. 즉, 긴롤-아웃에 상관없는 노이지가 있는 네트웍이 대표적인데, 이때에는 TD 보다는 시간적 에러에 견고한 MC 이거나 MC와 거의 동일한 학습이 더 나은 결과를 보여주고 있다. 이러한 해당 선행 연구들은 TD가 MC보다 낫다고 하는 기존의 통념에 위배되는 것이다. 다시 말하면, 해당 연구들은 TD만의 사용이 아니라, MC와 TD의 병합된 사용이 더 나음을 이론적이기 보다 경험적 예시로써 보여주고 있다. 따라서, 본 연구에서는 선행 연구들에서 보여준 결과를 바탕으로 하고, 해당 연구들에서 사용했던 특별한 리워드에 의한 복잡한 함수 없이, MC와 TD의 밸런스를 랜덤하게 맞추는 좀 더 간단한 방법으로 MC와 TD를 병합하고자 한다. 본 연구의 MC와 TD의 랜덤 병합에 의한 DQN과 TD-학습만을 사용한 이미 잘 알려진 DQN과 비교하여, 본 연구에서 제안한 MC와 TD의 랜덤 병합이 우수한 학습 방법임을 OpenAI Gym의 시뮬레이션을 통하여 증명하였다.
본 논문은 분산형 전력 시스템에서 심층강화학습 기반의 전력 생산 환경 및 수요와 공급을 예측하며 자원 할당 알고리즘을 적용해 전력거래 시스템 연구의 최적화된 결과를 보여준다. 전력 거래시스템에 있어서 기존의 중앙집중식 전력 시스템에서 분산형 전력 시스템으로의 패러다임 변화에 맞추어 전력거래에 있어서 공동의 이익을 추구하며 장기적인 거래의 효율을 증가시키는 전력 거래시스템의 구축을 목표로 한다. 심층강화학습의 현실적인 에너지 모델과 환경을 만들고 학습을 시키기 위해 날씨와 매달의 패턴을 분석하여 데이터를 생성하며 시뮬레이션을 진행하는 데 있어서 가우시안 잡음을 추가해 에너지 시장 모델을 구축하였다. 모의실험 결과 제안된 전력 거래시스템은 서로 협조적이며 공동의 이익을 추구하며 장기적으로 이익을 증가시킨 것을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.551-569
/
2024
With the rapid development of electric vehicles (EVs) industry, EV charging service becomes more and more important. Especially, in the case of suddenly drop of air temperature or open holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for example, long queueing times for EVs and unreasonable idling time for charging devices. To deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling method for the large-scale EVs charging service. Fine-grained states with two delicate neural networks are proposed to optimize the sequencing of EVs and charging station (CS) arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging scheduling scheme for large-scale EVs charging demand. Three case studies show the superiority of our proposal, in terms of a high service quality (minimized average queuing time of EVs and maximized charging performance at both EV and CS sides) and achieve greater scheduling efficiency. The code and data are available at THE CODE AND DATA.
Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.3821-3841
/
2019
Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.
Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.
본 연구의 목적은 경주 단구리 활성단층대에 설치된 지하수 관측정과 주변 국가지하수관측정 124개 공에서 지진발생에 따른 지하수위 변동특성을 알아보는 데 있다. 수위자료를 활용하여 시공간적 분포특성과 지진과의 상관성을 해석하였으며, 발생한 지진에 대하여 관측정의 반응에 대한 효율성(잠재성)을 나타내는 Earthquake effectiveness(ε)와 q-factor를 계산하여 유효성을 분석하였다. 관측기간 중 단구리 관측정의 지하수위 변동은 E1(2019년 4월 22일 M 3.8) 지진 발생 이후(post-seismic) 83 cm의 지하수위 하강을, E2(2019년 6월 11일 M 2.5) 지진발생 전(pre-seismic) 76 cm의 지하수위 상승을 보여주었다. 주변 국가지하수관측정의 수위자료를 이용하여 시간에 따른 공간분포 분석결과, 단층대 주변 관측정에서 수위변동이 상대적으로 높은 특성을 보인다. 그리고 충적지하수보다 암반지하수에서 더 큰 수위변동을 보여 암반 지하수가 지진 관측에 유리함을 보여준다. 이러한 수위의 상승과 하강은 지진에 의해 암반에 가해지는 인장응력에 의한 균열의 증가와 압축응력에 의한 공극의 감소와 관련된 것으로 보인다. 단구리 관측정의 Earthquake effectiveness(ε)와 q-factor의 유효범위는 각각 2.70E-10~5.60E-10, 14.4~18.0으로 산정되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.